zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A method for designing strong S-Boxes based on chaotic Lorenz system. (English) Zbl 1238.34085
Summary: It is important to design cryptographically strong S-Boxes in order to design secure systems. In this study, a strong, chaos-based S-Box design is proposed. Continuous-time Lorenz system is chosen as the chaotic system. Proposed methodology is analyzed and tested for the following criteria: Bijective property, nonlinearity, strict avalanche criterion, output bits independence criterion and equiprobable input/output XOR distribution. The results of the analysis show that the proposed cryptosystem is a highly reliable system suitable for secure communication.
MSC:
34C28Complex behavior, chaotic systems (ODE)
94A60Cryptography
References:
[1]Shannon, C. E.: Bell syst. Tech. J., Bell syst. Tech. J. 28, 656 (1949)
[2]Baptista, M. S.: Phys. lett. A, Phys. lett. A 240, 50 (1998)
[3]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Phys. lett. A, Phys. lett. A 276, 191 (2000)
[4]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Phys. lett. A, Phys. lett. A 311, 172 (2003)
[5]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Phys. lett. A, Phys. lett. A 306, 200 (2003)
[6]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Phys. lett. A, Phys. lett. A 319, 334 (2003)
[7]Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G.: Phys. lett. A, Phys. lett. A 326, 211 (2004)
[8]Li, S.; Mou, X.; Ji, Z.; Zhang, J.; Cai, Y.: Phys. lett. A, Phys. lett. A 290, 127 (2001)
[9]Li, S.; Mou, X.; Ji, Z.; Zhang, J.; Cai, Y.: Phys. lett. A, Phys. lett. A 307, 22 (2003)
[10]Wong, K. W.: Phys. lett. A, Phys. lett. A 298, 238 (2002)
[11]Wang, Y.; Wong, K. W.; Liao, X.; Xiang, T.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 14, 3089 (2009)
[12]Chen, G.; Chen, Y.; Liao, X.: Chaos solitons fractals, Chaos solitons fractals 31, 571 (2007)
[13]Guoping, T.; Xiaofeng, L.; Yong, C.: Chaos solitons fractals, Chaos solitons fractals 23, 413 (2005)
[14]Jakimoski, G.; Kocarev, L.: IEEE trans. Circuits syst.-I, IEEE trans. Circuits syst.-I 48, No. 2, 163 (2001)
[15]Adams, C.; Tavares, S.: Advances in cryptology: Proceedings of CRYPTO_89, Lecture notes in computer science, 612-615 (1989)
[16]Webster, A. F.; Tavares, S.: Advances in cryptology: Proceedings of CRYPTO_85, Lecture notes in computer science, 523-534 (1986)
[17]Detombe, J.; Tavares, S.: Advances in cryptology: Proceedings of CRYPTO_92, Lecture notes in computer science (1992)
[18]Biham, E.; Shamir, A.: J. cryptol., J. cryptol. 4, No. 1, 3 (1991)
[19]Dawson, M.; Tavares, S.: Advances in cryptology: Proceedings of EUROCRYPT_91, Lecture notes in computer science, 352-367 (1991)
[20]J. Pieprzyk, G. Finkelsten, Towards effective nonlinear cryptosystem design, in: IEE Proc. Part E: Computers Digital Techn., vol. 135, 1988, pp. 325-335