zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fan sub-equation method for Wick-type stochastic partial differential equations. (English) Zbl 1238.35198
Summary: An improved algorithm is devised for using the Fan sub-equation method to solve Wick-type stochastic partial differential equations. Applying the improved algorithm to the Wick-type generalized stochastic KdV equation, we obtain more general Jacobi and Weierstrass elliptic function solutions, hyperbolic and trigonometric function solutions, exponential function solutions and rational solutions.
MSC:
35R60PDEs with randomness, stochastic PDE
60H40White noise theory
35Q53KdV-like (Korteweg-de Vries) equations
References:
[1]Wadati, M.: J. phys. Soc. Japan, J. phys. Soc. Japan 52, 2642 (1983)
[2]Wadati, M.; Akutsu, Y.: J. phys. Soc. Japan, J. phys. Soc. Japan 53, 3342 (1984)
[3]Wadati, M.: J. phys. Soc. Japan, J. phys. Soc. Japan 59, 4201 (1990)
[4]De Bouard, A.; Debussche, A.: J. funct. Anal., J. funct. Anal. 154, 215 (1998)
[5]De Bouard, A.; Debussche, A.: J. funct. Anal., J. funct. Anal. 169, 258 (1999)
[6]Debussche, A.; Printems, J.: Physica D, Physica D 134, 200 (1999)
[7]Debussche, A.; Printems, J.: J. comput. Anal. appl., J. comput. Anal. appl. 3, 183 (2001)
[8]Konotop, V. V.; Vázquez, L.: Nonlinear random waves, (1994)
[9]Holden, H.; øksendal, B.; Ubøe, J.; Zhang, T. S.: Stochastic partial differential equations: A modeling, white noise functional approach, (1996) · Zbl 0860.60045
[10]Xie, Y. C.: Phys. lett. A, Phys. lett. A 310, 161 (2003)
[11]Xie, Y. C.: Phys. lett. A, Phys. lett. A 327, 174 (2004)
[12]Xie, Y. C.: Chaos solitons fractals, Chaos solitons fractals 21, 473 (2004)
[13]Wei, C. M.; Xia, Z. Q.: Chaos solitons fractals, Chaos solitons fractals 26, 329 (2005)
[14]Wei, C. M.; Xia, Z. Q.; Tian, N. S.: Chaos solitons fractals, Chaos solitons fractals 26, 551 (2005)
[15]Wei, C. M.; Xia, Z. Q.; Tian, N. S.: Chaos solitons fractals, Chaos solitons fractals 29, 1178 (2006)
[16]Chen, B.; Xie, Y. C.: Chaos solitons fractals, Chaos solitons fractals 33, 864 (2007)
[17]Chen, B.; Xie, Y. C.: J. comput. Appl. math., J. comput. Appl. math. 203, 249 (2007)
[18]Liu, Q.; Zhu, J. M.; Wu, H. Y.: J. phys. Soc. Japan, J. phys. Soc. Japan 75, 014002 (2006)
[19]Liu, Q.: Europhys. lett., Europhys. lett. 74, 377 (2006)
[20]Liu, Q.: Chaos solitons fractals, Chaos solitons fractals 36, 1037 (2008)
[21]Liu, Q.; Jia, D. L.: Appl. math. Comput., Appl. math. Comput. 215, 3495 (2010)
[22]Ma, Z. Y.; Zhu, J. M.: Chaos solitons fractals, Chaos solitons fractals 32, 1679 (2008)
[23]Dai, C. Q.; Chen, J. L.: Chaos solitons fractals, Chaos solitons fractals 42, 2200 (2008)
[24]Ginovart, F.: J. comput. Appl. math., J. comput. Appl. math. 220, 559 (2008)
[25]Fan, E. G.: Phys. lett. A, Phys. lett. A 300, 243 (2002)
[26]Fan, E. G.: J. phys. A: math. Gen., J. phys. A: math. Gen. 36, 7009 (2003)
[27]Fan, E. G.: Chaos solitons fractals, Chaos solitons fractals 16, 819 (2003)
[28]Fan, E. G.; Dai, H. H.: Comput. phys. Commun., Comput. phys. Commun. 153, 17 (2003)
[29]Fan, E. G.; Hon, Y.: Chaos solitons fractals, Chaos solitons fractals 15, 559 (2003)
[30]Chen, Y.; Wang, Q.; Li, B.: Commun. theor. Phys., Commun. theor. Phys. 42, 655 (2004)
[31]Jiao, X. Y.; Wang, J. H.; Zhang, H. Q.: Commun. theor. Phys., Commun. theor. Phys. 44, 407 (2005)
[32]Yomba, E.: Chaos solitons fractals, Chaos solitons fractals 27, 187 (2006)
[33]Zhang, S.; Xia, T. C.: Phys. lett. A, Phys. lett. A 356, 119 (2006)
[34]Feng, D. H.; Li, J. B.; Lü, J. L.; He, T. L.: Appl. math. Comput., Appl. math. Comput. 194, 309 (2007)
[35]Li, B.; Chen, Y.; Li, Y. Q.: Z. naturforsch., Z. naturforsch. 63a, 763 (2008)
[36]Wang, M. J.; Wang, Q.: Chaos solitons fractals, Chaos solitons fractals 33, 835 (2007)
[37]Benth, E.; Gjerde, J.: Potential anal., Potential anal. 8, 179 (1998)
[38]Wei, C. M.; Xia, Z. Q.; Tian, N. S.: Acta phys. Sinica, Acta phys. Sinica 54, 2463 (2005)
[39]Wei, C. M.; Xia, Z. Q.; Tian, N. S.: Chaos solitons fractals, Chaos solitons fractals 37, 733 (2008)
[40]Chen, B.; Xie, Y. C.: Chaos solitons fractals, Chaos solitons fractals 23, 281 (2005)