zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. (English) Zbl 1238.65077
The author considers a nonlinear fractional differential equation with deviating arguments. A method of upper and lower solutions and the monotone iterative technique is used to prove constructive existence results for the problem under consideration. Some useful example is presented to illustrate the method considered by the author.
MSC:
65L10Boundary value problems for ODE (numerical methods)
65L03Functional-differential equations (numerical methods)
34K10Boundary value problems for functional-differential equations
34K37Functional-differential equations with fractional derivatives
34K28Numerical approximation of solutions of functional-differential equations
References:
[1]Podlubny, I.: Fractional differential equations, mathematics in science and engineering, (1999)
[2]Lakshmikantham, V.; Leela, S.; Vasundhara, J.: Theory of fractional dynamic systems, (2009)
[3]Agarwal, R. P.; O’regan, D.; Wong, P. J. Y.: Positive solutions of differential, difference and integral equations, (1999)
[4]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[5]Burton, T. A.: Differential inequalities for integral and delay differential equations, Lecture notes in pure and appl. Math. (1994)
[6]Al-Bassam, M. A.: Some existence theorems on differential equations of generalized order, J. reine angew. Math. 218, No. 1, 70-78 (1965) · Zbl 0156.30804 · doi:10.1515/crll.1965.218.70 · doi:crelle:GDZPPN002181150
[7]Bai, Z.; Qiu, T.: Existence of positive solution for singular fractional differential equation, Appl. math. Comput. 215, 2761-2767 (2009) · Zbl 1185.34004 · doi:10.1016/j.amc.2009.09.017
[8]Ibrahim, R. W.; Darus, M.: Subordination and superordination for univalent solutions for fractional differential equations, J. math. Anal. appl. 345, 871-879 (2008) · Zbl 1147.30009 · doi:10.1016/j.jmaa.2008.05.017
[9]Zhang, S.: Positive solution for some class of nonlinear fractional differential equation, J. math. Anal. appl. 278, No. 1, 136-148 (2003) · Zbl 1026.34008 · doi:10.1016/S0022-247X(02)00583-8
[10]Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay, J. math. Anal. appl. 338, 1340-1350 (2008) · Zbl 1209.34096 · doi:10.1016/j.jmaa.2007.06.021
[11]Kosmatov, N.: Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear anal. TMA 70, No. 7, 2521-2529 (2009) · Zbl 1169.34302 · doi:10.1016/j.na.2008.03.037
[12]Devi, J. V.; Lakshmikantham, V.: Nonsmooth analysis and fractional differential equations, Nonlinear anal. TMA 70, No. 12, 4151-4157 (2009)
[13]Lakshmikanthama, V.; Leela, S.: A Krasnoselskii–Krein-type uniqueness result for fractional differential equations, Nonlinear anal. 71, 3421-3424 (2009) · Zbl 1177.34004 · doi:10.1016/j.na.2009.02.008
[14]Kosmatov, N.: Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear anal. 70, No. 7, 2521-2529 (2009) · Zbl 1169.34302 · doi:10.1016/j.na.2008.03.037
[15]Arara, A.; Benchohra, M.; Hamidi, N.; Nieto, J. J.: Fractional order differential equations on an unbounded domain, Nonlinear anal. 72, 580-586 (2010) · Zbl 1179.26015 · doi:10.1016/j.na.2009.06.106
[16]Lakshmikantham, V.: Theory of fractional functional differential equations, Nonlinear anal. 69, 3337-3343 (2008) · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[17]Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations, Nonlinear anal. 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[18]Lakshmikantham, V.; Vatsala, A. S.: Theorey of fractional differential inequalities and applications, Commun. appl. Anal. 11, 871-879 (2007) · Zbl 1159.34006
[19]Lakshmikanthan, V.; Vatsala, A. S.: General uniqueness and monotone iterative technique for fractional differential equations, Appl. math. Lett. 21, 828-834 (2008) · Zbl 1161.34031 · doi:10.1016/j.aml.2007.09.006
[20]Zhang, S.: Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives, Nonlinear anal. 71, 2087-2093 (2009) · Zbl 1172.26307 · doi:10.1016/j.na.2009.01.043
[21]Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations, Nonlinear anal. 71, 6093-6096 (2009)
[22]Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R.: Existence of periodic solution for a nonlinear fractional differential equation, Bound. value probl. 2009 (2009) · Zbl 1181.34006 · doi:10.1155/2009/324561
[23]Chang, Y. K.; Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. comput. Model. 49, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[24]Liang, S.; Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear anal. 71, 5545-5550 (2009) · Zbl 1185.26011 · doi:10.1016/j.na.2009.04.045
[25]Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. Appl. 58, No. 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[26]Shi, K.; Wang, Y.: On a stochastic fractional partial differential equation driven by a Lévy space–time white noise, J. math. Anal. appl. 364, No. 1, 119-129 (2010) · Zbl 1185.60071 · doi:10.1016/j.jmaa.2009.11.010
[27]Liu, J.; Xu, M.: Some exact solutions to Stefan problems with fractional differential equations, J. math. Anal. appl. 351, No. 2, 536-542 (2009) · Zbl 1163.35043 · doi:10.1016/j.jmaa.2008.10.042
[28]Wei, Z.; Li, Q.; Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative, J. math. Anal. appl. 367, 260-272 (2010) · Zbl 1191.34008 · doi:10.1016/j.jmaa.2010.01.023
[29]Henderson, J.; Ouahab, A.: Fractional functional differential inclusions with finite delay, Nonlinear anal. 70, 2091-2105 (2009) · Zbl 1159.34010 · doi:10.1016/j.na.2008.02.111
[30]Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J.: On the concept of solution for fractional differential equations with uncertainty, Nonlinear anal. 72, No. 6, 2859-2862 (2010) · Zbl 1188.34005 · doi:10.1016/j.na.2009.11.029
[31]Bai, Z.; Lv, H.: Positive solutions for boundary value problems of nonlinear fractional differential equations, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[32]Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S.: Monotone iterative techniques for nonlinear differential equations, (1985)