zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. (English) Zbl 1238.90109
Summary: The performance of an optimization tool is largely determined by the efficiency of the search algorithm used in the process. The fundamental nature of a search algorithm will essentially determine its search efficiency and thus the types of problems it can solve. Modern metaheuristic algorithms are generally more suitable for global optimization. This paper carries out extensive global optimization of unconstrained and constrained problems using the recently developed eagle strategy by Yang and Deb in combination with the efficient differential evolution. After a detailed formulation and explanation of its implementation, the proposed algorithm is first verified using twenty unconstrained optimization problems or benchmarks. For the validation against constrained problems, this algorithm is subsequently applied to thirteen classical benchmarks and three benchmark engineering problems reported in the engineering literature. The performance of the proposed algorithm is further compared with various, state-of-the-art algorithms in the area. The optimal solutions obtained in this study are better than the best solutions obtained by the existing methods. The unique search features used in the proposed algorithm are analyzed, and their implications for future research are also discussed in detail.
MSC:
90C26Nonconvex programming, global optimization
90C59Approximation methods and heuristics
65K10Optimization techniques (numerical methods)
References:
[1]Baeck, T.; Fogel, D. B.; Michalewicz, Z.: Handbook of evolutionary computation, (1997)
[2]Yang, X. S.: Engineering optimization: an introduction with metaheuristic applications, (2010)
[3]J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ. 1995, pp. 1942–1948.
[4]Storn, R.; Price, K. V.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11, No. 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[5]Yang, X. S.; Deb, S.: Cuckoo search via Lévy flights, (2009)
[6]A.H. Gandomi, X.S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers, in press (doi:10.1007/s00366-011-0241-y.
[7]Kaveh, A.; Talatahari, S.: A novel heuristic optimization method: charged system search, Acta mechanica 213, No. 3–4, 267-289 (2010)
[8]Geem, Z. W.; Kim, J. H.; Loganathan, G. V.: A new heuristic optimization algorithm: harmony search, Simulation 76, No. 2, 60-68 (2001)
[9]Holland, J.: Adaptation in natural and artificial systems, (1975)
[10]X.S. Yang, S. Deb, Eagle strategy using Levy walk and firefly algorithms for stochastic optimization. in: J.R. Gonzalez et al. (Eds. ), Nature Inspired Cooperative Strategies for Optimization, NICSO 2010, vol. 284, 2010, pp. 101–111. · Zbl 1197.90349 · doi:10.1007/978-3-642-12538-6_9
[11]M. Gutowski, Levy flights as an underlying mechanism for global optimization algorithms, June 2001. ArXiv Mathematical Physics e-Prints.
[12]Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster, IEEE transactions on evolutionary computation 3, No. 2, 82-102 (1999)
[13]Ma, H.: An analysis of the equilibrium of migration models for biogeography-based optimization, Information sciences 180, 3444-3464 (2010) · Zbl 1194.92073 · doi:10.1016/j.ins.2010.05.035
[14]Hock, W.; Schittkowski, K.: Test examples for nonlinear programming codes, (1981)
[15]Michalewicz, Z.; Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems, Evolutionary computation 4, No. 1, 1-32 (1996)
[16]Runarsson, T. P.; Yao, X.: Stochastic ranking for constrained evolutionary optimization, IEEE transactions on evolutionary computation 4, No. 3, 284-294 (2000)
[17]Hedar, A.; Fukushima, M.: Derivative-free filter simulated annealing method for constrained continuous global optimization, Journal of global optimization 35, 521-549 (2006) · Zbl 1133.90421 · doi:10.1007/s10898-005-3693-z
[18]Gandomi, A. H.; Yang, X. S.: X.y.yangs.kozielbenchmark problems in structural optimization, Computational optimization and applications 356/2011, 259-281 (2011) · Zbl 1218.90005 · doi:10.1007/978-3-642-20859-1_12
[19]E.M. Montes, C.A.C. Coello, A simple multimembered evolution strategy to solve constrained optimization problems, Technical Report EVOCINV-04-2003, Evolutionary Computation Group at CINVESTAV, Secci’on de Computaci’on, Departamento de Ingenierıa El’ectrica, CINVESTAV-IPN, Mexico D.F., Mexico, 2003.
[20]Amirjanov, A.: The development of a changing range genetic algorithm, Computer methods in applied mechanics and engineering 195, c2495-c2508 (2006) · Zbl 1123.65053 · doi:10.1016/j.cma.2005.05.014
[21]Mir, M. Atiqullah; Rao, S. S.: Simulated annealing and parallel processing: an implementation for constrained global design optimization, Engineering optimization 32, No. 5, 659-685 (2000)
[22]Cabrera, J. C. F.; Coello, C. A. C.: Handling constraineds in particle swarm optimization using a small population size, MICAI 2007: advances in artificial intelligence, 6th international conference on artificial intelligence, lecture notes in artificial intelligence 4827 (2007)
[23]A.H. Gandomi, X.S. Yang, A.H. Alavi, S. Talatahari, Bat Algorithm for Constrained Optimization Tasks (submitted for publication).
[24]Becerra, R. L.; Coello, C. A. C.: Cultured differential evolution for constrained optimization, Computer methods in applied mechanics and engineering 195, No. 33–36, 4303-4322 (2006) · Zbl 1123.74039 · doi:10.1016/j.cma.2005.09.006
[25]He, S.; Prempain, E.; Wu, Q. H.: An improved particle swarm optimizer for mechanical design optimization problems, Engineering optimization 36, No. 5, 585-605 (2004)
[26]Runarsson, T. P.; Yao, X.: Stochastic ranking for constrained evolutionary optimization, IEEE transactions on evolutionary computation 4, No. 3, 284-294 (2000)
[27]Ray, T.; Liew, K. M.: Society and civilization: an optimization algorithm based on the simulation of social behavior, IEEE transactions on evolutionary computation 7, No. 4, 386-396 (2003)
[28]H.S. Bernardino, H.J.C. Barbosa, A.C.C. Lemonge, L.G. Fonseca, A new hybrid AIS-GA for constrained optimization problems in mechanical engineering, in: 2008 Congress on Evolutionary Computation, CEC’2008, IEEE Service Center: Piscataway, NJ, USA, Hong Kong 2008, pp. 1455–1462.
[29]Aragon, V. S.; Esquivel, S. C.; Coello, C. A. C.: A modified version of a T-cell algorithm for constrained optimization problems, International journal for numerical methods in engineering 84, 351-378 (2010) · Zbl 1202.74128 · doi:10.1002/nme.2904
[30]Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization, Information sciences 178, No. 15, 3043-3074 (2008)