zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vaccination strategies based on feedback control techniques for a general SEIR-epidemic model. (English) Zbl 1238.92030
Summary: This paper presents several simple linear vaccination-based control strategies for a SEIR (susceptible plus infected plus infectious plus removed populations) propagation disease model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptibles and infecteds. The vaccination control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously that the remaining populations (i.e., susceptible plus infected plus infectious) tend asymptotically to zero.
92C60Medical epidemiology
93B52Feedback control
34H15Stabilization (ODE in connection with control problems)
[1]De La Sen, M.; Alonso-Quesada, S.: A control theory point of view on beverton – Holt equation in population dynamics and some of its generalizations, Applied mathematics and computation 199, No. 2, 464-481 (2008) · Zbl 1137.92034 · doi:10.1016/j.amc.2007.10.021
[2]De La Sen, M.; Alonso-Quesada, S.: Control issues for the beverton – Holt equation in population in ecology by locally monitoring the environment carrying capacity: non-adaptive and adaptive cases, Applied mathematics and computation 215, No. 7, 2616-2633 (2009) · Zbl 1179.92069 · doi:10.1016/j.amc.2009.09.003
[3]De La Sen, M.; Alonso-Quesada, S.: Model-matching-based control of the beverton – Holt equation in ecology, Discrete dynamics in nature and society (2008) · Zbl 1149.92029 · doi:10.1155/2008/793512
[4]De La Sen, M.: The generalized beverton – Holt equation and the control of populations, Applied mathematical modelling 32, No. 11, 2312-2328 (2008) · Zbl 1156.39301 · doi:10.1016/j.apm.2007.09.007
[5]Stevic, S.: A short proof of the cushing-henson conjecture, Discrete dynamics in nature and society (2007)
[6]Stevic, S.: On a generalized MAX-type difference equation from automatic control theory, Nonlinear analysis 72, 1841-1849 (2010) · Zbl 1194.39007 · doi:10.1016/j.na.2009.09.025
[7]Epidemic Models: Their Structure and Relation to Data, Publications of the Newton Institute, Cambridge University Press, Denis Mollison Editor, 2003.
[8]Keeling, M. J.; Rohani, P.: Modeling infectious diseases in humans and animals, (2008)
[9]Yildirim, A.; Cherruault, Y.: Analytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method, Kybernetes 38, No. 9, 1566-1575 (2009) · Zbl 1192.65115 · doi:10.1108/03684920910991540
[10]Erturk, V. S.; Momani, S.: Solutions to the problem of prey and predator and the epidemic model via differential transform method, Kybernetes 37, No. 8, 1180-1188 (2008) · Zbl 1180.49041 · doi:10.1108/03684920810884973
[11]Ortega, N.; Barros, L. C.; Massad, E.: Fuzzy gradual rules in epidemiology, Kybernetes 32, No. 3 – 4, 460-477 (2003) · Zbl 1040.92038 · doi:10.1108/03684920310463876
[12]Khan, H.; Mohapatra, R. N.; Vajravelu, K.; Liao, S. J.: The explicit series solution of SIR and SIS epidemic models, Applied mathematics and computation 215, No. 2, 653-669 (2009) · Zbl 1171.92033 · doi:10.1016/j.amc.2009.05.051
[13]Song, X. Y.; Jiang, Y.; Wei, H. M.: Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays, Applied mathematics and computation 214, No. 2, 381-390 (2009) · Zbl 1168.92326 · doi:10.1016/j.amc.2009.04.005
[14]Zhang, T. L.; Liu, J. L.; Teng, Z. D.: Dynamic behaviour for a nonautonomous SIRS epidemic model with distributed delays, Applied mathematics and computation 214, No. 2, 624-631 (2009) · Zbl 1168.92327 · doi:10.1016/j.amc.2009.04.029
[15]Mukhopadhyay, B.; Bhattacharyya, R.: Existence of epidemic waves in a disease transmission model with two-habitat population, International journal of systems science 38, No. 9, 699-707 (2007) · Zbl 1160.93349 · doi:10.1080/00207720701596417
[16]Kalivianakis, M.; Mous, S. L. J.; Grasman, J.: Reconstruction of the seasonally varying contact rate for measles, Mathematical biosciences 124, No. 2, 225-234 (1994) · Zbl 0818.92021 · doi:10.1016/0025-5564(94)90044-2
[17]Kaczorek, T.: Positive 1D and 2D systems, (2002)
[18]Goodwin, G. C.; Graebe, S. F.; Salgado, M. E.: Control system design, (2001)
[19]Poznyak, A. S.: Advanced mathematical tools for automatic control engineers: deterministic techniques, (2008)