zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Measure functional differential equations and functional dynamic equations on time scales. (English) Zbl 1239.34076

Measure functional differential equations of the form

x(t)=x(t 0 )+ t 0 t f(x s ,s)dg(s),t[t 0 ,t 0 +σ],

are studied, where the integral on the right-hand side is the Kurzweil-Stieltjes integral with respect to a nondecreasing function g·

The relation between measure functional differential equations and generalized ordinary differential equations is described. It is explained also that impulsive functional differential equations represent a special case of measure functional differential equations. Moreover the relation between functional dynamic equations on time scales and measure functional differential equations is established.

Using the existing theory of generalized ordinary differential equations, results on the existence and uniqueness of a solution and on the continuous dependence of a solution on parameters for both, measure functional differential equations and functional dynamic equations on time scales, are obtained.


MSC:
34K05General theory of functional-differential equations
34K45Functional-differential equations with impulses
34N05Dynamic equations on time scales or measure chains
34K33Averaging (functional-differential equations)
References:
[1]Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001)
[2]Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales, (2003)
[3]Das, P. C.; Sharma, R. R.: Existence and stability of measure differential equations, Czechoslovak math. J. 22, No. 97, 145-158 (1972) · Zbl 0241.34070
[4]Deo, S. G.; Joshi, S. R.: On abstract measure delay differential equations, An. ştiinţ. Univ. al. I. cuza iaşi (N.S.), sect. Ia 26, 327-335 (1980) · Zbl 0454.34046
[5]Deo, S. G.; Pandit, S. G.: Differential systems involving impulses, Lecture notes in math. 954 (1982) · Zbl 0539.34001
[6]Federson, M.; Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations, Differential integral equations 19, No. 11, 1201-1234 (2006) · Zbl 1212.34251
[7]Fraňková, D.: Continuous dependence on a parameter of solutions of generalized differential equations, Čas. Pěstování mat. 114, No. 3, 230-261 (1989) · Zbl 0677.34003
[8]Fraňková, D.: Regulated functions, Math. bohem. 116, No. 1, 20-59 (1991) · Zbl 0724.26009
[9]Gordon, R. A.: The integrals of Lebesgue, Denjoy, Perron, and Henstock, (1994)
[10]Hale, J. K.; Lunel, S. M. V.: Introduction to functional differential equations, (1993)
[11]Hilger, S.: Analysis on measure chains - a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[12]Imaz, C.; Vorel, Z.: Generalized ordinary differential equations in Banach spaces and applications to functional equations, Bol. soc. Mat. mexicana 11, 47-59 (1966) · Zbl 0178.44203
[13]Joshi, S. R.: A system of abstract measure delay differential equations, J. math. Phys. sci. 13, 497-506 (1979) · Zbl 0435.34053
[14]Karpuz, B.: Existence and uniqueness of solutions to systems of delay dynamic equations on time scales, Int. J. Math. comput. 10, No. M11, 48-58 (2011)
[15]Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak math. J. 7, No. 82, 418-448 (1957) · Zbl 0090.30002
[16]Liu, X.; Wang, W.; Wu, J.: Delay dynamic equations on time scales, Appl. anal. 89, No. 8, 1241-1249 (2010) · Zbl 1209.34114 · doi:10.1080/00036811.2010.483595
[17]Mesquita, J. G.; Slavík, A.: Periodic averaging theorems for various types of equations, J. math. Anal. appl. 387, 862-877 (2012)
[18]Oliva, F.; Vorel, Z.: Functional equations and generalized ordinary differential equations, Bol. soc. Mat. mexicana 11, 40-46 (1966) · Zbl 0178.44204
[19]Schwabik, Š.: Generalized ordinary differential equations, Ser. real anal. 5 (1992) · Zbl 0781.34003
[20]Sanders, J. A.; Verhulst, F.; Murdock, J.: Averaging methods in nonlinear dynamical systems, (2007)
[21]Sharma, R. R.: An abstract measure differential equation, Proc. amer. Math. soc. 32, 503-510 (1972) · Zbl 0229.34054 · doi:10.2307/2037847
[22]Slavík, A.: Dynamic equations on time scales and generalized ordinary differential equations, J. math. Anal. appl. 385, 534-550 (2012)