zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response. (English) Zbl 1239.39011
Summary: We perform a bifurcation analysis of a discrete predator-prey model with Holling functional response. We summarize stability conditions for the three kinds of fixed points of the map, further called F 1 ,F 2 and F 3 and collect complete information on this in a single scheme. In the case of F 2 we also compute the critical normal form coefficient of the flip bifurcation analytically. We further obtain new information about bifurcations of the cycles with periods 2, 3, 4, 5, 8 and 16 of the system by numerical computation of the corresponding curves of fixed points and codim-1 bifurcations, using the software package MatContM. Numerical computation of the critical normal form coefficients of the codim-2 bifurcations enables us to determine numerically the bifurcation scenario around these points as well as possible branch switching to curves of codim-1 points. Using parameter-dependent normal forms, we compute codim-1 bifurcation curves that emanate at codim-2 bifurcation points in order to compute the stability boundaries of cycles with periods 4, 5, 8 and 16.
MSC:
39A28Bifurcation theory (difference equations)
92D25Population dynamics (general)
Software:
MATCONT
References:
[1]Elabbasy, E. M.; Saker, S. H.: Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator, J. appl. Math. comput. 17, 195-215 (2005) · Zbl 1069.34071 · doi:10.1007/BF02936049
[2]K.G. Magnusson, O.K. Palsson, Predator–prey interactions of cod and capelin in Icelandic waters, in: ICES Marine Science Symposium, vol. 193, 1991, pp. 153–170.
[3]Gao, H.; Wei, H.; Sun, W.; Zhai, X.: Functions used in biological models and their influence on simulations, Indian J. Mar. sci. 29, 230-237 (2000)
[4]Holling, C. S.: The functional response of predator to prey density and its role in mimicry and population regulation, Mem. entomol. Soc. can. 45, 1-60 (1965)
[5]Smith, J. Maynard: Mathematical ideas in biology, (1968)
[6]Edelstein-Keshet, L.: Mathematical models in biology, (2005)
[7]Jang, S. R. J.: Allee effects in a discrete-time host–parasitoid model, J. difference equ. Appl. 12, No. 2, 165-181 (2006) · Zbl 1088.92058 · doi:10.1080/10236190500539238
[8]Kot, M.: Elements of mathematical ecology, (2001)
[9]Liu, X.; Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system, Chaos solitons fractals 32, 80-94 (2007) · Zbl 1130.92056 · doi:10.1016/j.chaos.2005.10.081
[10]Mickens, R. E.: A nonstandard finite-difference scheme for the Lotka–Volterra system, Appl. numer. Math. 45, 309-314 (2003) · Zbl 1025.65047 · doi:10.1016/S0168-9274(02)00223-4
[11]Murakami, K.: Stability and bifurcation in a discrete-time predator–prey model, J. difference equ. Appl. 10, 911-925 (2007) · Zbl 1127.39020 · doi:10.1080/10236190701365888
[12]Neubert, M. G.; Kot, M.: The subcritical collapse of predator populations in discrete-time predator–prey models, Math. biosci. 110, 45-66 (1992) · Zbl 0747.92024 · doi:10.1016/0025-5564(92)90014-N
[13]Sacker, R. J.; Von Bremen, H. F.: A new approach to cycling in a 2-locus 2-allele genetic model, J. difference equ. Appl. 9, No. 5, 441-448 (2003) · Zbl 1049.92027 · doi:10.1080/1023619031000076551
[14]Summers, D.; Justian, C.; Brian, H.: Chaos in periodically forced discrete-time ecosystem models, Chaos solitons fractals 11, 2331-2342 (2000) · Zbl 0964.92044 · doi:10.1016/S0960-0779(99)00154-X
[15]Takeuchi, Y.: Global dynamical properties of Lotka–Volterra systems, (1996) · Zbl 0844.34006
[16]Danca, M.; Codreanu, S.; Bako, B.: Detailed analysis of a nonlinear prey–predator model, J. biol. Phys. 23, 11-20 (1997)
[17]Hadeler, K. P.; Gerstmann, I.: The discrete rosenzweig model, Math. biosci. 98, 49-72 (1990) · Zbl 0694.92014 · doi:10.1016/0025-5564(90)90011-M
[18]Rosenzweig, M.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science 171, 385-387 (1971)
[19]Agiza, H. N.; Elabbasy, E. M.; El-Metwally, H.; Elsadany, A. A.: Chaotic dynamics of a discrete prey–predator model with Holling type II, Nonlinear anal. RWA 10, 116-129 (2009) · Zbl 1154.37335 · doi:10.1016/j.nonrwa.2007.08.029
[20]Li, S.; Zhang, W.: Bifurcations of a discrete prey–predator model with Holling type II functional response, Discrete contin. Dyn. syst. 14, 159-176 (2010) · Zbl 1200.37043 · doi:10.3934/dcdsb.2010.14.159
[21]Ghaziani, R. Khoshsiar; Govaerts, W.; Sonck, C.: Codimension-two bifurcations of fixed points in a class of discrete prey–predator systems, Discrete dyn. Nat. soc. 2011 (2011) · Zbl 1229.92072 · doi:10.1155/2011/862494
[22]Govaerts, W.; Ghaziani, R. Khoshsiar; Kuznetsov, Yu.A.; Meijer, H. G. E.: Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. comput. 29, No. 6, 2644-2667 (2007) · Zbl 1155.65397 · doi:10.1137/060653858
[23]W. Govaerts, Yu.A. Kuznetsov, MatCont: a Matlab software project for the numerical continuation and bifurcation study of continuous and discrete parameterized dynamical systems. www.sourceforge.net.
[24]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[25]Lotka, A. J.: Elements of mathematical biology, (1926)
[26]V. Volterra, Opere Matematiche: Memorie e Note, vol. V, Acc. Naz. dei Lincei, Roma, Cremon, 1926.
[27]Hsu, S. B.; Hwang, T. W.: Global stability for a class of predator–prey systems, SIAM J. Appl. math. 55, 763-783 (1995) · Zbl 0832.34035 · doi:10.1137/S0036139993253201
[28]Kuznetsov, Yu.A.: Elements of applied bifurcation theory, (2004)
[29]Murray, J. D.: Mathematical biology, (1993)
[30]Allgower, E. L.; Georg, K.: Numerical continuation methods: an introduction, (1990)
[31]Kraft, R. L.: Chaos, Cantor sets, and hyperbolicity for the logistic maps, Amer. math. Monthly 106, 400-408 (1999) · Zbl 0992.37029 · doi:10.2307/2589144