zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation. (English) Zbl 1239.68068
Summary: We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset.
MSC:
68T20AI problem solving (heuristics, search strategies, etc.)
References:
[1]B. Akay, D. Karaboga, A modified artificial bee colony algorithm for real-parameter optimization, Information Sciences, (2010), doi:10.1016/j.ins.2010.07.015.
[2]A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proceedings of the Congress on Evolutionary Computation, vol. 2, 2005, pp. 1769 – 1776.
[3], Evolutionary computation 1: basic algorithms and operators (2000)
[4]P.J. Ballester, J.N. Carter, Real-parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2003, pp. 706 – 717. · Zbl 1028.68668 · doi:http://link.springer.de/link/service/series/0558/bibs/2723/27230706.htm
[5]P.J. Ballester, J.N. Carter, An effective real-parameter genetic algorithm with parent centric normal crossover for multimodal optimisation, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2004, pp. 901 – 913.
[6]P.J. Ballester, J.N. Carter, An effective real-parameter genetic algorithms for multimodal optimization, in: Proceedings of the Adaptive Computing in Design and Manufacture VI, 2004, pp. 359 – 364.
[7]Beyer, H. -G.: Theory of evolution strategies, (2001)
[8]Beyer, H. -G.; Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms, IEEE transactions on evolutionary computation 5, No. 3, 250-270 (2001)
[9]Chandra, B.; Varghese, P. P.: Moving towards efficient decision tree construction, Information sciences 179, No. 8, 1059-1069 (2009) · Zbl 1183.68523 · doi:10.1016/j.ins.2008.12.006
[10]Chen, Y. -P.; Peng, W. -C.; Jian, M. -C.: Particle swarm optimization with recombination and dynamic linkage discovery, IEEE transactions on systems, man, and cybernetics, part B 37, No. 6, 1460-1470 (2007)
[11]Chu, P. C.; Beasley, J. E.: A genetic algorithm for the multidimensional knapsack problem, Journal of heuristics 4, 63-86 (1998) · Zbl 0913.90218 · doi:10.1023/A:1009642405419
[12]P. Cortez, A. Morais. A data mining approach to predict forest fires using meteorological data, in: Proceedings of the 13th EPIA 2007 – Portuguese Conference on Artificial Intelligence, 2007, pp. 512 – 523.
[13]Das, S.; Suganthan, P. N.: Differential evolution – a survey of the state-of-the-art, IEEE transactions on evolutionary computation 15, No. 1, 4-31 (2011)
[14]Dasgupta, S.; Das, S.; Biswas, A.; Abraham, A.: On stability and convergence of the population-dynamics in differential evolution, AI communicaitons 22, No. 1, 1-20 (2009) · Zbl 1200.68185 · doi:10.3233/AIC-2009-0440
[15]Deb, K.; Agrawal, R. B.: Simulated binary crossover for continuous search space, Complex systems 9, No. 2, 115-148 (1995) · Zbl 0843.68023
[16]Deb, K.; Anand, A.; Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization, Evolutionary computation 10, No. 4, 371-395 (2002)
[17]K. Deb, H.-G. Beyer. Self-adaptation in real-parameter genetic algorithms with simulated binary crossover, in: Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 172 – 179.
[18]Deb, K.; Kumar, A.: Real-coded genetic algorithms with simulated binary crossover: studies on multi-modal and multi-objective problems, Complex systems 9, 431-454 (1995)
[19]K. Deb, K. Sindhya, T. Okabe, Self-adaptive simulated binary crossover for real-parameter optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2007, pp. 1187 – 1194.
[20]B. Dorronsoro, E. Alba, A simple cellular genetic algorithm for continuous optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2006, pp. 2838 – 2844.
[21]L.J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination, in: Proceedings of the Workshop on Foundations of Genetic Algorithms, 1991, pp. 265 – 283.
[22]L.J. Eshelman, K.E. Mathias, J.D. Schaffer, Crossover operator biases: Exploiting the population distribution, in: Proceedings of the International Conference on Genetic Algorithms, 1997, pp. 354 – 361.
[23]L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and interval-schemata, in: Proceedings of the Workshop on Foundations of Genetic Algorithms, 1993, pp. 187 – 202.
[24]Goldberg, D. E.: Real-coded genetic algorithms, virtual alphabets, and blocking, Complex systems 5, 139-167 (1991) · Zbl 0764.68143
[25]Guanqi, G.; Shouyi, Y.: Evolutionary parallel local search for function optimization, IEEE transactions on systems, man, and cybernetics, part B 33, No. 6, 864-876 (2003)
[26]Hansen, N.; Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies, Evolutionary computation 9, 159-195 (2001)
[27]Herrera, F.; Lozano, M.; Sánchez, A. M.: A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study, International journal of intelligent systems 18, No. 3, 309-338 (2003) · Zbl 1048.68067 · doi:10.1002/int.10091
[28]Herrera, F.; Lozano, M.; Sánchez, A. M.: Hybrid crossover operators for real-coded genetic algorithms: an experimental study, Soft computing 9, No. 4, 280-298 (2005) · Zbl 1066.68155 · doi:10.1007/s00500-004-0380-9
[29]Herrera, F.; Lozano, M.; Verdegay, J. L.: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis, Artificial intelligence review 12, No. 4, 265-319 (1998) · Zbl 0905.68116 · doi:10.1023/A:1006504901164
[30]T. Higuchi, S. Tsutsui, M. Yamamura, Theoretical analysis of simplex crossover for real-coded genetic algorithms, in: Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature, 2000, pp. 365 – 374.
[31]Howell, M. N.; Gordon, T. J.; Brandao, F. V.: Genetic learning automata for function optimization, IEEE transactions on systems, man, and cybernetics, part B 32, No. 6, 804-815 (2002)
[32]Hu, B. -G.; Qu, H. -B.; Wang, Y.; Yang, S. -H.: A generalized-constraint neural network model: associating partially known relationships for nonlinear regressions, Information sciences 179, No. 12, 1929-1943 (2009)
[33]Huang, H.; Qin, H.; Hao, Z.; Lim, A.: Example-based learning particle swarm optimization for continuous optimization, Information sciences 182, No. 1, 125-138 (2011)
[34]Ibáñez, O.; Ballerini, L.; Cordón, O.; Damas, S.; Santamaría, J.: An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification, Information sciences 179, No. 23, 3998-4028 (2009)
[35]Igel, C.; Hansen, N.; Roth, S.: Covariance matrix adaptation for multi-objective optimization, Evolutionary computation 15, No. 1, 1-28 (2007)
[36]C. Igel, T. Suttorp, N. Hansen, A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2006, pp. 453 – 460.
[37]Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous optimization, Theoretical computer science 379, No. 3, 329-347 (2007) · Zbl 1149.90147 · doi:10.1016/j.tcs.2007.02.042
[38]C.Z. Janikow, Z. Michalewicz, An experimental comparison of binary and floating point representations in genetic algorithms, in: Proceedings of the Fourth International Conference on Genetic Algorithms, 1991, pp. 31 – 36.
[39]Juang, Y. -T.; Tung, S. -L.; Chiu, H. -C.: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions, Information sciences 181, No. 20, 4539-4549 (2011)
[40]Kang, F.; Li, J.; Ma, Z.: Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions, Information sciences 181, No. 16, 3508-3531 (2011)
[41]Kita, H.: A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms, Evolutionary computation 9, No. 2, 223-241 (2001)
[42]H. Kita, I. Ono, S. Kobayashi, Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms, in: Proceedings of the International Conference on Evolutionary Computation, 1998, pp. 529 – 534.
[43]H. Kita, I. Ono, S. Kobayashi, Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms, in: Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1581 – 1587.
[44]O. Kramer, Premature convergence in constrained continuous search spaces, in: Proceedings of the Parallel Problem Solving from Nature, 2008, pp. 62 – 71.
[45]Kramer, O.: Self-adaptive heuristics for evolutionary computation, (2008)
[46]O. Kramer, B. Gloger, A. Goebels, An experimental analysis of evolution strategies and particle swarm optimisers using design of experiments, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2007, pp. 674 – 681.
[47]Krohling, R. A.; Coelho, L. S.: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE transactions on systems, man, and cybernetics, part B 36, No. 6, 1407-1416 (2006)
[48]S. Kukkonen, J. Lampinen, An extension of generalized differential evolution for multi-objective optimization with constraints, in: Proceedings of the Parallel Problem Solving from Nature, 2004, pp. 752 – 761.
[49]S. Kukkonen, J. Lampinen, GDE3: the third evolution step of generalized differential evolution, in: Proceedings of the Congress on Evolutionary Computation, 2005, pp. 443 – 450.
[50]Sun, C. L.; Zeng, J.; Pan, J.: An improved vector particle swarm optimization for constrained optimization problems, Information sciences 181, No. 6, 1153-1163 (2011)
[51]Leung, Y. -W.; Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE transactions on evolutionary computation 5, No. 1, 41-53 (2001)
[52]Li, M.; Wang, Z.: A hybrid coevolutionary algorithm for designing fuzzy classifiers, Information sciences 179, No. 12, 1970-1983 (2009)
[53]Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D.: Real-coded memetic algorithms with crossover Hill-climbing, Evolutionary computation 12, No. 3, 273-302 (2004)
[54]S. Meyer-Nieberg, H.-G. Beyer, Self-adaptation in evolutionary algorithms, in: Proceedings of the Parameter Setting in Evolutionary Algorithms, 2007, pp. 47 – 75.
[55]Mezura-Montes, E.; Miranda-Varela, M. E.; Gómez-Ramón, R. D. C.: Differential evolution in constrained numerical optimization: an empirical study, Information sciences 180, No. 22, 4223-4262 (2010) · Zbl 1206.90226 · doi:10.1016/j.ins.2010.07.023
[56]Michalewicz, Z.: Genetic algorithms+Data structures=Evolution programs, (1996)
[57]H. Mühlenbein, The breeder genetic algorithm – a provable optimal search algorithm and its application, in: IEE Colloquium on Applications of Genetic Algorithms, 1994, pp. 5/1 – 5/3.
[58]Mühlenbein, H.; Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm I: Continuous parameter optimization, Evolutionary computation 1, No. 1, 25-49 (1993)
[59]D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998. lt;http://archive.ics.uci.edu/ml/gt;.
[60]N. Noman, H. Iba, Enhancing differential evolution performance with local search for high dimensional function optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2005, pp. 25 – 29.
[61]I. Ono, H. Kita, S. Kobayashi, A robust real-coded genetic algorithm using unimodal normal distribution crossover augmented by uniform crossover: effects of self-adaptation of crossover probabilitie, in: Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 496 – 503.
[62]I. Ono, S. Kobayashi, A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover, in: Proceedings of the Seventh International Conference on Genetic Algorithms, 1997, pp. 246 – 253.
[63]Peng, L.; Yang, B.; Chen, Y.; Abraham, A.: Data gravitation based classification, Information sciences 179, No. 6, 809-819 (2009) · Zbl 1178.68455 · doi:10.1016/j.ins.2008.11.007
[64]Petridis, V.; Kazarlis, S.; Bakirtzis, A.: Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems, IEEE transactions on systems, man, and cybernetics, part B 28, No. 5, 629-640 (1998)
[65]Qi, A.; Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part I: Basic properties of selection and mutation, IEEE transactions on neural networks 5, No. 1, 102-119 (1994)
[66]Qi, A.; Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part II: Analysis of the diversification role of crossover, IEEE transactions on neural networks 5, No. 1, 120-129 (1994)
[67]G.R. Raidl, Weight-codings in a genetic algorithm for the multiconstraint knapsack problem, in: Proceedings of the Congress on Evolutionary Computation, vol. 1, 1999, pp. 596 – 603.
[68]Reed, J.; Toombs, R.; Barricelli, N. A.: Simulation of biological evolution and machine learning, Journal of theoretical biology 17, 319-342 (1967)
[69]Ripon, K. S. N.; Kwong, S.; Man, K. F.: A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization, Information sciences 177, No. 2, 632-654 (2007) · Zbl 1142.68524 · doi:10.1016/j.ins.2006.07.019
[70]J. Rönkkönen, S. Kukkonen, K. Price, Real-parameter optimization with differential evolution, in: Proceedings of the Congress on Evolutionary Computation, 2005, pp. 506 – 513.
[71]Socha, K.; Dorigo, M.: Ant colony optimization for continuous domains, European journal of operational research 185, No. 3, 1155-1173 (2008) · Zbl 1146.90537 · doi:10.1016/j.ejor.2006.06.046
[72]Someya, H.; Yamamura, M.: A robust real-coded evolutionary algorithm with toroidal search space conversion, Soft computing 9, No. 4, 254-269 (2005) · Zbl 1066.68033 · doi:10.1007/s00500-004-0378-3
[73]Storn, R.; Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11, No. 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[74]P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwar, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report NCL-TR-2005001, Natural Computing Laboratory (NCLab), Department of Computer Science, National Chiao Tung University, May 2005.
[75]P.D. Surry, N. Radcliffe, Real representations, in: Proceedings of the Workshop on Foundations of Genetic Algorithms, 1996, pp. 343 – 363.
[76]M. Takahashi, H. Kita, A crossover operator using independent component analysis for real-coded genetic algorithm, in: Proceedings of the Congress on Evolutionary Computation, 2001, pp. 643 – 649.
[77]S. Tsutsui, Multi-parent recombination in genetic algorithms with search space boundary extension by mirroring, in: Proceedings of the Fifth International Conference on Parallel Problem Solving from Nature, 1998, pp. 428 – 437.
[78]Tsutsui, S.; Goldberg, D. E.: Search space boundary extension method in real-coded genetic algorithms, Information sciences 133, No. 3 – 4, 229-247 (2001) · Zbl 0981.68739 · doi:10.1016/S0020-0255(01)00087-1
[79]S. Tsutsui, D.E. Goldberg, Simplex crossover and linkage identification: single-stage evolution vs. multi-stage evolution, in: Proceedings of the IEEE International Conference on Evolutionary Computation, 2002, pp. 974 – 979.
[80]S. Tsutsui, D.E. Goldberg, K. Sastry, Linkage learning in real-coded GAs with simplex crossover, in: Proceedings of the Fifth International Conference on Artificial Evolution, 2001, pp. 51 – 58.
[81]S. Tsutsui, M. Yamamura, T. Higuchi, Multi-parent recombination with simplex crossover in real coded genetic algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 657 – 664.
[82]Tu, Z.; Lu, Y.: A robust stochastic genetic algorithm (StGA) for global numerical optimization, IEEE transactions on evolutionary computation 8, No. 5, 456-470 (2004)
[83]Wei, Liwei; Chen, Zhenyu; Li, Jianping: Evolution strategies based adaptive lp LS-SVM, Information sciences 181, No. 14, 3000-3016 (2011) · Zbl 1216.68227 · doi:10.1016/j.ins.2011.02.029
[84]A.H. Wright, Genetic algorithms for real parameter optimization, in: Proceedings of the Workshop on Foundations of Genetic Algorithms, 1991, pp. 205 – 218.
[85]Yue, S.; Wang, J. -S.; Wu, T.; Wang, H.: A new separation measure for improving the effectiveness of validity indices, Information sciences 180, No. 5, 748-764 (2010)
[86]Zhang, M.; Luo, W.; Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization, Information sciences 178, No. 15, 3043-3074 (2008)