zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable generalized finite element method (SGFEM). (English) Zbl 1239.74093
Summary: The Generalized Finite Element Method (GFEM) is a Partition of Unity Method (PUM), where the trial space of standard Finite Element Method (FEM) is augmented with non-polynomial shape functions with compact support. These shape functions, which are also known as the enrichments, mimic the local behavior of the unknown solution of the underlying variational problem. GFEM has been successfully used to solve a variety of problems with complicated features and microstructure. However, the stiffness matrix of GFEM is badly conditioned (much worse compared to the standard FEM) and there could be a severe loss of accuracy in the computed solution of the associated linear system. In this paper, we address this issue and propose a modification of the GFEM, referred to as the Stable GFEM (SGFEM). We show that SGFEM retains the excellent convergence properties of GFEM, does not require a ramp-function in the presence of blending elements, and the conditioning of the associated stiffness matrix is not worse than that of the standard FEM. Moreover, SGFEM is very robust with respect to the parameters of the enrichments. We show these features of SGFEM on several examples.
MSC:
74S05Finite element methods in solid mechanics
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
References:
[1]American Society of Mechanical Engineers, New York. ASME guide for Verification and Validation in Computational Solid Mechanics, 2006. Vamp;V 10.
[2]P.R. Amestoy, I.S. Duff, J. Koster, J.Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIMAX 23 (2001) 15 – 41. · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[3]I. Babuśka, R. Lipton. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Technical Report 10-12, ICES, University of Texas at Austin, 2010.
[4]Babuška, I.; Banerjee, U.; Osborn, J.: Generalized finite element methods: Main ideas, results, and perspective, Int. J. Comput. methods 1, No. 1, 1-37 (2004) · Zbl 1081.65107 · doi:10.1142/S0219876204000083
[5]Babuška, I.; Caloz, G.; Osborn, J.: Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. anal. 31, 945-981 (1994) · Zbl 0807.65114 · doi:10.1137/0731051
[6]Babuška, I.; Melenk, J. M.: The partition of unity finite element method, Int. J. Numer. meth. Engrg. 40, 727-758 (1997) · Zbl 0949.65117 · doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
[7]Babuška, I.; Oden, J. T.: Verification and validation in computational engineering and science: basic concepts, Comput. methods appl. Mech. engrg. 193, 4057-4066 (2004) · Zbl 1198.74126 · doi:10.1016/j.cma.2004.03.002
[8]Bauer, F. L.: Optimal scaling of matrices and the importance of the minimal condition, Information processing 62 IFIP congress 1962, 198-201 (1963) · Zbl 0135.37501
[9]Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. meth. Engrg. 45, 601-620 (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[10]Benzley, S. E.: Representation of singularities with isoparametric finite elements, Int. J. Numer. meth. Engrg. 8, 537-545 (1974) · Zbl 0282.65087 · doi:10.1002/nme.1620080310
[11]Blum, H.; Dobrowoski, M.: On finite element methods for elliptic equations on domains with corners, Computing 28, 53-63 (1982) · Zbl 0465.65059 · doi:10.1007/BF02237995
[12]Byskov, E.: The calculation of stress intensity factors using finite element with cracked element, Int. J. Fract. mech. 6, 159-167 (1970)
[13]Daux, C.; Moes, N.; Dolbow, J.; Sukumar, N.; Belytschko, T.: Arbitrary branched and intersecting cracks with extended finite element method, Int. J. Numer. meth. Engrg. 48, 1741-1760 (2000) · Zbl 0989.74066 · doi:10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
[14]J. Demmel. On floating point error in cholesky. Technical Report CS-89-87, Dept. of Computer Science, Univ. of Tennessee, 1989.
[15]Dolbow, J.; Moës, N.; Belytschko, T.: Modeling fracture in Mindlin-Reissner plates with the extended finite element method, J. solids struct. 37, 7161-7183 (2000) · Zbl 0993.74061 · doi:10.1016/S0020-7683(00)00194-3
[16]J.E. Dolbow, An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. Ph.D. Thesis, Northwestern University, 1999.
[17]Duarte, C. A.; Oden, J. T.: An h-p adaptive method using clouds, Comput. methods appl. Mech. engrg. 139, 237-262 (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[18]Duarte, C. A.; Oden, J. T.: H-p clouds – an h-p meshless method, Numer. methods partial differ. Equat. 12, 673-705 (1996) · Zbl 0869.65069 · doi:10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
[19]Esser, P.; Grande, J.; Reusken, A.: An extended finite element method applied to levitated droplet problems, Int. J. Numer. meth. Engrg 84, 757-773 (2010) · Zbl 1202.76092 · doi:10.1002/nme.2913
[20]Farsad, M.; Vernerey, F. J.; Park, H. S.: An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials, Int. J. Numer. meth. Engrg 84, 1466-1489 (2010) · Zbl 1202.74168 · doi:10.1002/nme.2946
[21]Fix, G.; Gulati, S.; Wakoff, G. I.: On the use of singular functions with finite element approximations, J. comp. Phys. 13, 209-228 (1973) · Zbl 0273.35004 · doi:10.1016/0021-9991(73)90023-5
[22]Fries, T. -P.: A corrected XFEM approximation without problems in blending elements, Int. J. Numer. meth. Engrg. 75, 503-532 (2008) · Zbl 1195.74173 · doi:10.1002/nme.2259
[23]Fries, T-P; Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. meth. Engrg. 84, 253-304 (2010) · Zbl 1202.74169 · doi:10.1002/nme.2914
[24]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[25]Griebel, M.; Schweitzer, M. A.: A particle-partition of unity method – part VI: Adaptivity, Lecture notes on computer science and engineering 26, 121-148 (2006)
[26]Higham, N. J.: Accuracy and stability of numerical algorithms, (2002) · Zbl 1011.65010 · doi:10.1137/1.9780898718027
[27]Kincaid, D.; Cheney, W.: Numerical analysis; mathematics of scientific computing, (2002)
[28]Kleindorfer, G. B.; O’neill, L.; Ganeshan, R.: Validation in similation: various positions in the philosophy of science, Management science 44, 1087-1099 (1998) · Zbl 1103.90377 · doi:10.1287/mnsc.44.8.1087
[29]Li, X. S.; Demmel, J. W.: Superlu-DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM trans, mathematical software 29, 110-140 (2003) · Zbl 1068.90591 · doi:10.1145/779359.779361
[30]Lu, C.; Shanker, B.: Generalized finite element method for vector electromafnetic problems, IEEE transactions on antennas and propagation 55, 1369-1381 (2007)
[31]Matache, A. M.; Babuśka, I.; Schwab, C.: Generalized p-FEM in homogenization, Numer. math. 86 (2000) · Zbl 0964.65125 · doi:10.1007/s002110000155
[32]J.M. Melenk, On Generalized Finite Element Methods, Ph.D. Thesis, University of Maryland, 1995.
[33]Melenk, J. M.; Babuška, I.: The partition of unity finite element method: basic theory and application, Comput. methods appl. Mech. engrg. 139, 289-314 (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[34]Menk, A.; Bordas, S. P. A.: A robust preconditioning technique for the extended finite element method, Int. J. Meth. engrg. 85, 1609-1632 (2011) · Zbl 1217.74128 · doi:10.1002/nme.3032
[35]Moes, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F.: A computational approach to handle complex microstructure geometries, Comput. methods appl. Mech. engrg. 192, 3163-3177 (2003) · Zbl 1054.74056 · doi:10.1016/S0045-7825(03)00346-3
[36]Moes, N.; Dolbow, J.; Belytschko, T.: A finite element method for crack without remeshing, Int. J. Numer. meth. Engrg. 46, 131-150 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[37]Nouy, A.; Clément, A.: Extended stochastic finite element method for the numerical simulation of heterogegeous materials with random material interfaces, Int. J. Numer. meth. Engng 83, 1312-1344 (2010) · Zbl 1202.74182 · doi:10.1002/nme.2865
[38]Oberkampf, W. L.; Roy, Ch. J.: Verification and validation in scientific computing, (2010)
[39]J.T. Oden, C.A.M. Duarte. Clouds, Cracks and FEMs, in: B. Daya Reddy (Ed.), Recent Developments in Computational and Applied Mechanics, 1997.
[40]Oden, J. T.; Duarte, C. A. M.; Zienkiewicz, O. C.: A new cloud-based hp finite element method, Comput. methods appl. Mech. engrg. 153, 117-126 (1998) · Zbl 0956.74062 · doi:10.1016/S0045-7825(97)00039-X
[41]O’hara, P.; Duarte, C. A.; Eason, T.: Generalized finite element analysis for three-dimensional problems exhibiting sharp thermal gradients, Comput. methods appl. Mech. engrg. 198, 1857-1871 (2009) · Zbl 1227.80050 · doi:10.1016/j.cma.2008.12.024
[42]Rao, A. K.; Raju, I. S.; Murthy, A. V. K.: A powerful hybrid method in finite element analysis, Int. J. Numer. meth. Engrg. 3, 389-403 (1971) · Zbl 0261.65078 · doi:10.1002/nme.1620030308
[43]Roache, P. J.: Fundamentals of verification and validation, (2009)
[44]Schweitzer, M. A.: A parallel multilevel partition of unity method for elliptic partial differential equations, Lecture notes in computational science 29 (2003)
[45]Simone, A.; Duarte, C. A.; Van Der Giessen, E.: A generalized finite element method for polycrystals with discontinuous grain boundaries, Int. J. Numer. meth. Engrg. 67, 1122-1145 (2006) · Zbl 1113.74076 · doi:10.1002/nme.1658
[46]Simulation Interoperability Standards Organization, Orlando, FL, Guide for generic methodology for Verificatin and Validation (Vamp;V) and acceptance of models, simulations, and data, 2007.
[47]Strang, G.; Fix, G.: An analysis of the finite element method, (2008)
[48]Strouboulis, T.; Babuška, I.; Copps, K.: The design and analysis of the generalized finite element method, Comput. methods appl. Mech. engrg. 181, 43-69 (2000) · Zbl 0983.65127 · doi:10.1016/S0045-7825(99)00072-9
[49]Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method: an example of its implementation and illustration of its performance, Int. J. Numer. methods engrg. 47, 1401-1417 (2000) · Zbl 0955.65080 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
[50]Strouboulis, T.; Copps, K.; Babuška, I.: The generalized finite element method, Comput. methods appl. Mech. engrg. 190, 4081-4193 (2001) · Zbl 0997.74069 · doi:10.1016/S0045-7825(01)00188-8
[51]Sukumar, N.; Moes, N.; Moran, B.; Belytschko, T.: Extended finite element method for three dimensional crack modelling, Int. J. Numer. methods engrg. 48, No. 11, 1549-1570 (2000) · Zbl 0963.74067 · doi:10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
[52]Wilkinson, J. H.: The algebraic eigenvalue problem, (1988) · Zbl 0626.65029