zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sensitivity of a shallow-water model to parameters. (English) Zbl 1239.76016
Summary: An adjoint based technique is applied to a shallow water model in order to estimate the influence of the model’s parameters on the solution. Among parameters, the bottom topography, initial conditions, boundary conditions on rigid boundaries, viscosity coefficients, Coriolis parameter and the amplitude of the wind stress tension are considered. Their influence is analyzed from three points of view: flexibility of the model with respect to a parameter that is related to the lowest value of the cost function that can be obtained in the data assimilation experiment that controls this parameter;possibility to improve the model by the parameter’s control, i.e., whether the solution with the optimal parameter remains close to observations after the end of control;sensitivity of the model solution to the parameter in a classical sense. That implies the analysis of the sensitivity estimates and their comparison with each other and with the local Lyapunov exponents that characterize the sensitivity of the model to initial conditions. Two configurations have been analyzed: an academic case of the model in a square box and a more realistic case simulating Black sea currents. It is shown in both experiments that the boundary conditions near a rigid boundary highly influence the solution. This fact points out the necessity to identify optimal boundary approximation during a model development.
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35PDEs in connection with fluid mechanics
[1]Lorenz, E.: Deterministic non periodic flow, J. atmos. 20, 130-141 (1963)
[2]F.-X. Le Dimet, A general formalism of variational analysis, Technical Report OK 73091, CIMMS report, Normann, 1982.
[3]Le Dimet, F. -X.; Talagrand, O.: Variational algorithm for analysis and assimilation of meteorological observations, theoretical aspects, Tellus 38A, 97-110 (1986)
[4]J.-L. Lions, Contrôle optimal de systèmes gouvernés pas des équations aux dérivées parielles, Dunod, 1968. · Zbl 0179.41801
[5]Marchuk, G.: Formulation of theory of perturbations for complicated models, Appl. math. Optim. 2, 1-33 (1975) · Zbl 0324.65053 · doi:10.1007/BF01458193
[6]Losch, M.; Wunsch, C.: Bottom topography as a control variable in an ocean model, J. atmos. Ocean. techol. 20, 1685-1696 (2003)
[7]Heemink, A. W.; Mouthaana, E. E. A.; Roesta, M. R. T.; Vollebregta, E. A. H.; Robaczewskab, K. B.; Verlaanb, M.: Inverse 3d shallow water flow modelling of the continental shelf, Cont. shelf res. 22, 465-484 (2002)
[8]Kazantsev, E.: Identification of optimal topography by variational data assimilation, J. phys. Math. 1, 1-23 (2009)
[9]Shulman, I.: Local data assimilation in specification of open boundary conditions, J. atmos. Ocean. techol. 14, 1409-1419 (1997)
[10]Shulman, I.; Lewis, J. K.; Blumberg, A. F.; Kim, B. N.: Optimized boundary conditions and data assimilation with application to the m2 tide in the yellow sea, J. atmos. Ocean. tech. 15, No. 4, 1066-1071 (1998)
[11]Taillandier, V.; Echevin, V.; Mortier, L.; Devenon, J. -L.: Controlling boundary conditions with a four-dimensional variational data-assimilation method in a non-stratified open coastal model, Ocean dyn. 54, No. 2, 284-298 (2004)
[12]Brummelhuis, P. G. J. Ten; Heemink, A. W.; Den Boogaard, H. F. P. Van: Identification of shallow sea models, Int. J. Numer. methods fluids 17, 637-665 (1993) · Zbl 0793.76066 · doi:10.1002/fld.1650170802
[13]Le Dimet, F. -X.; Ouberdous, M.: Retrieval of balanced fields: an optimal control method, Tellus A 45, No. 5, 449-461 (1993)
[14]Leredde, Y.; Lellouche, J. M.; Devenon, J. L.; Dekeyser, I.: On initial, boundary conditions and viscosity coefficient control for Burgers equation, Int. J. Numer. methods fluids 28, No. 1, 113-128 (1998) · Zbl 0928.76035 · doi:10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1
[15]Lellouche, J.; Devenon, J.; Dekeyser, I.: Boundary control on Burgers equation, a numerical approach, Comput. math. Appl. 28, 33-44 (1994) · Zbl 0807.76065 · doi:10.1016/0898-1221(94)00138-3
[16]Kazantsev, E.: Identification of an optimal boundary approximation by variational data assimilation, J. comput. Phys. 229, 256-275 (2010)
[17]Kazantsev, E.: Optimal boundary discretisation by variational data assimilation, Int. J. Numer. methods fluids 65, 1231-1259 (2011)
[18]E. Kazantsev, Boundary conditions control for a shallow-water model, Int. J. Numer. Methods Fluids, in press (doi:10.1002/fld.2526).
[19]Zou, X.; Navon, I.; Le Dimet, F. -X.: An optimal nudging data assimilation scheme using parameter estimation, Q. J. Roy.met. soc. 118, 1163-1186 (1992)
[20]Panchang, V.; O’brien, J.: On the determination of hydraulic model parameters using the strong constraint formulation modeling marine systems, vol. 1, (1988)
[21]Chertok, D.; Lardner, R.: Variational data assimilation for a nonlinear hydraulic model, Appl. math. Modelling 20, No. 9, 675-682 (1996) · Zbl 0859.93041 · doi:10.1016/0307-904X(96)00048-0
[22]Arakawa, A.; Lamb, V.: Methods in computational physics, , 174-267 (1977)
[23]Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.: Unified notation for data assimilation: operational, sequential and variational, J. met. Soc. Japan 75, No. 1B, 181-189 (1997)
[24]L. Hascoët, V. Pascual, Tapenade 2.1 user’s guide, Technical Report 0300, INRIA, 2004, URL: http://www.inria.fr/rrrt/rt-0300.html.
[25]M.-H. Tber, L. Hascoët, A. Vidard, B. Dauvergne, Building the tangent and adjoint codes of the ocean general circulation model OPA with the automatic differentiation tool tapenade, Research Report 6372, INRIA, 2007, URL: https://hal.inria.fr/inria-00192415.
[26]Gilbert, J.; Lemarechal, C.: Some numerical experiments with variable storage quasi-Newton algorithms, Math. program. 45, 407-435 (1989) · Zbl 0694.90086 · doi:10.1007/BF01589113
[27]Le Provost, C.; Verron, J.: Wind-driven ocean circulation transition to barotropic instability, Dyn. atmos. Oceans 11, 175-201 (1987)
[28]Simmonet, E.; Ghil, M.; Ide, K.; Temam, R.; Wang, S.: Low-frequency variability in shallow-water models of the wind-driven ocean circulation, J. phys. Oceanogr. 33, 729-752 (2003)
[29]Munk, W. H.: On the wind-driven ocean circulation, J. meteorol. 7, 3-29 (1950)
[30]Korotaev, G.; Oguz, T.; Nikiforov, A.; Koblinsky, C.: Seasonal, interannual, and mesoscale variability of the black sea upper layer circulation derived from altimeter data, Jgr 108, 3122 (2003)
[31]Korotaev, G. K.; Saenko, O. A.; Koblinsky, C. J.: Satellite altimetry observations of the black sea level, Jgr 106, 917-934 (2001)