zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere. (English) Zbl 1239.76057
Summary: A time-fractional central symmetric diffusion-wave equation is investigated in a sphere. Two types of Neumann boundary condition are considered: the mathematical condition with the prescribed boundary value of the normal derivative and the physical condition with the prescribed boundary value of the matter flux. Several examples of problems are solved using the Laplace integral transform with respect to time and the finite sine-Fourier transform of the special type with respect to the spatial coordinate. Numerical results are illustrated graphically.
MSC:
76R50Diffusion (fluid mechanics)
35R11Fractional partial differential equations
References:
[1]Petrov, N.; Brankov, G.: Modern problems of thermodynamics, (1986)
[2]Tamma, K. K.; Zhou, X.: Macroscale and microscale thermal transport and thermomechanical interactions: some noteworthy perspectives, J. thermal stresses 21, 405-449 (1998)
[3]Chandrasekharaiah, D. S.: Hyperbolic thermoelasticity: a review of recent literature, Appl. mech. Rev. 51, 705-729 (1998)
[4]Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[5]Metzler, R.; Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. phys. A: math. Gen. 37, R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[6]Povstenko, Y. Z.: Fractional heat conduction equation and associated thermal stress, J. thermal stresses 28, 83-102 (2005)
[7]Povstenko, Y. Z.: Theory of thermoelasticity based on the space–time-fractional heat conduction equation, Phys. scr. T 136, 014017 (2009)
[8]Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P.: Time fractional diffusion: a discrete random walk approach, Nonlinear dynam. 29, 129-143 (2002) · Zbl 1009.82016 · doi:10.1023/A:1016547232119
[9]Nigmatullin, R. R.: To the theoretical explanation of the ”universal response”, Phys. status solidi (B) 123, 739-745 (1984)
[10]Nigmatullin, R. R.: The realization of the generalized transfer in a medium with fractal geometry, Phys. status solidi (B) 133, 425-430 (1986)
[11]Mainardi, F.: Fractional diffusive waves in viscoelastic solids, IUTAM symposium–nonlinear waves in solids, 93-97 (1995)
[12]Mainardi, F.; Paradisi, P.: Fractional diffusive waves, J. comput. Acoust. 9, 1417-1436 (2001)
[13]Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997)
[14], Applications of fractional calculus in physics (2000)
[15]West, B. J.; Bologna, M.; Grigolini, P.: Physics of fractal operators, (2003)
[16]Magin, R. L.: Fractional calculus in bioengineering, (2006)
[17]Gafiychuk, V. V.; Datsko, B. Yo.: Mathematical modeling of different types of instabilities in time fractional reaction–diffusion systems, Comput. math. Appl. 59, 1101-1107 (2010) · Zbl 1189.35151 · doi:10.1016/j.camwa.2009.05.013
[18]Uchaikin, V. V.: Method of fractional derivatives, (2008)
[19]Wyss, W.: The fractional diffusion equation, J. math. Phys. 27, 2782-2785 (1986) · Zbl 0632.35031 · doi:10.1063/1.527251
[20]Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations, J. math. Phys. 30, 134-144 (1989) · Zbl 0692.45004 · doi:10.1063/1.528578
[21]Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation, Appl. math. Lett. 9, 23-28 (1996) · Zbl 0879.35036 · doi:10.1016/0893-9659(96)00089-4
[22]Lenzi, E. K.; Mendes, R. S.; Gonçalves, G.; Lenzi, M. K.; Da Silva, L. R.: Fractional diffusion equation and Green function approach: exact solutions, Physica A 360, 215-226 (2006)
[23]Povstenko, Y.: Time-fractional radial diffusion in a sphere, Nonlinear dynam. 53, 55-65 (2008) · Zbl 1170.76357 · doi:10.1007/s11071-007-9295-1
[24]Lenzi, E. K.; Lenzi, M. K.; Rossato, R.; Evangelista, L. R.; Da Silva, L. R.: Results for a fractional diffusion equation with a nonlocal term in spherical symmetry, Phys. lett. A 372, 6121-6124 (2008) · Zbl 1225.34010 · doi:10.1016/j.physleta.2008.08.029
[25]Lucena, L. S.; Da Silva, L. R.; Evangelista, L. R.; Lenzi, M. K.; Rossato, R.; Lenzi, E. K.: Solutions for a fractional diffusion equation with spherical symmetry using Green function approach, Chem. phys. 344, 90-94 (2008)
[26]Povstenko, Y. Z.: Fundamental solution to three-dimensional diffusion-wave equation and associated diffusive stresses, Chaos solitons fractals 36, 961-972 (2008) · Zbl 1131.74022 · doi:10.1016/j.chaos.2006.07.031
[27]Povstenko, Y.: Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity, Quart. J. Mech. appl. Math. 61, 523-547 (2008) · Zbl 1153.74012 · doi:10.1093/qjmam/hbn016
[28]Özdemir, N.; Karadeniz, D.: Fractional diffusion-wave problem in cylindrical coordinates, Phys. lett. A 372, 5968-5972 (2008) · Zbl 1223.26012 · doi:10.1016/j.physleta.2008.07.054
[29]Lenzi, E. K.; Da Silva, L. R.; Silva, A. T.; Evangelista, L. R.; Lenci, M. K.: Some results for a fractional diffusion equation with radial symmetry in a confined region, Physica A 388, 806-810 (2009)
[30]Jiang, X.; Xu, M.: The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems, Physica A 389, 3368-3374 (2010)
[31]Qi, H.; Liu, J.: Time-fractional radial diffusion in hollow geometry, Meccanica 45, 577-583 (2010)
[32]Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear dynam. 29, 145-155 (2002) · Zbl 1009.65085 · doi:10.1023/A:1016539022492
[33]Lykov, A. V.: Theory of heat conduction, (1967)
[34]Lenzi, E. K.; Ribeiro, H. V.; Martins, J.; Lenzi, M. K.; Lenzi, G. G.; Sphecchia, S.: Non-Markovian diffusion equation and diffusion in a porous catalyst, Chem. eng. J. 172, 1083-1087 (2011)
[35]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[36]Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics, 223-276 (1997)
[37]Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G.: Higher transcendental functions, Higher transcendental functions 3 (1955) · Zbl 0064.06302