zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age-structured population models. (English) Zbl 1239.92075
Summary: This paper presents comparison between the Homotopy Analysis Method (HAM) and Optimal Homotopy Asymptotic Method (OHAM) for the solution of nonlinear age-structured population models. Three examples have been presented to illustrate and compare these methods. In OHAM the convergence region can be easily adjusted and controlled. A comparison between our solution and the exact solution shows that the both methods are effective and accurate in solving nonlinear age-structured population models with the HAM being the more accurate for the same number of terms. It was also found that the OHAM requires more CPU time.
MSC:
92D25Population dynamics (general)
35A25Other special methods (PDE)
35C10Series solutions of PDE
35Q92PDEs in connection with biology and other natural sciences
References:
[1]Alomari, A. K.; Noorani, M. S. M.; Nazar, R.; Li, C. P.: Homotopy analysis method for solving fractional Lorenz system, commun nonlinear sci numer simulat, Commun nonlinear sci numer simulat 15, 1864-1872 (2010) · Zbl 1222.65082 · doi:10.1016/j.cnsns.2009.08.005
[2]Alomari, A. K.; Noorani, M. S. M.; Nazar, R.: Comparison between the homotopy analysis method and homotopy paerturbation method to solve coupled Schrödinger – KdV equation, J appl math comput 31, 1-12 (2009) · Zbl 1177.65152 · doi:10.1007/s12190-008-0187-4
[3]Alomari, A. K.; Noorani, M. S. M.; Nazar, R.: The homotopy analysis method for the exact solutions of the K(2,2), Burgers and coupled Burgers equations, Appl math sci 2, No. 40, 1963-1977 (2008) · Zbl 1154.35438 · doi:http://www.m-hikari.com/ams/ams-password-2008/ams-password37-40-2008/alomariAMS37-40-2008.pdf
[4]Angulo, O.; Lopez-Marcos, J. C.; Lopez-Marcos, M. A.; Milner, F. A.: A numerical method for nonlinear age-structured population models with finite maximum age, J math anal appl 361, 150-160 (2010) · Zbl 1208.65139 · doi:10.1016/j.jmaa.2009.09.001
[5]Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: Modified homotopy analysis method for solving systems of second-order BVPs, Commun nonlinear sci numer simulat 14, 430-442 (2009) · Zbl 1221.65196 · doi:10.1016/j.cnsns.2007.09.012
[6]Cui, M. G.; Chen, C.: The exact solution of nonlinear age-structured population model, Nonlinear anal: real world appl 8, 1096-1112 (2007) · Zbl 1124.35030 · doi:10.1016/j.nonrwa.2006.06.004
[7]Herisanu, N.; Marinca, V.; Dordea, T.; Madescu, G.: A new analytical approach to nonlinear vibration of an electric machine, Proc romanian acad ser A: math phys tech sci, inf sci 9, No. 3, 229-236 (2008)
[8]Iqbal, S.; Idrees, M.; Siddiqui, A. M.; Ansari, A. R.: Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method, Appl math comput 216, 28982909 (2010) · Zbl 1193.35190 · doi:10.1016/j.amc.2010.04.001
[9]Kim, M. Y.; Kwon, Y.: A collocation method for the gurtinmaccamy equation with finite life-span, SIAM J numer anal 39, No. 6, 1914-1937 (2002) · Zbl 1012.65147 · doi:10.1137/S0036142900370927
[10]Li, X.: Variational iteration method for nonlinear age-structured population models, Comput math appl 58, 2177-2181 (2009) · Zbl 1189.65251 · doi:10.1016/j.camwa.2009.03.060
[11]Liao S-J. The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D.dissertation, Shanghai Jiao Tong University, Shanghai, China; 1992.
[12]Liao, S. -J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[13]Liao, S. -J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun nonlinear sci numer simulat 15, 20032016 (2010) · Zbl 1222.65088 · doi:10.1016/j.cnsns.2009.09.002
[14]Marinca, V.; Herisanu, N.; Nemes, I.: Optimal homotopy asymptotic method with application to thin film flow, Cent eur J phys 6, No. 3, 648-653 (2008)
[15]Marinca, V.; Herisanu, N.; Bota, C.; Marinca, B.: An optimal homotopy asymptotic method applied to the steady flow of fourth-grade fluid past a porous plate, Appl math lett 22, No. 2, 245-251 (2009) · Zbl 1163.76318 · doi:10.1016/j.aml.2008.03.019
[16]Marinca, V.; Herisanu, N.: An optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int comm heat mass transfer 35, 710-715 (2008)
[17]Niu, Z.; Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations, Commun nonlinear sci numer simulat 15, 2026-2036 (2010) · Zbl 1222.65091 · doi:10.1016/j.cnsns.2009.08.014