zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive consensus problem of second-order multi-agent systems with switching topologies. (English) Zbl 1239.93006
Summary: The paper proposes an impulsive consensus protocol to solve the consensus problem of second-order multi-agent systems with fixed and switching topologies. Some sufficient conditions are obtained for the states of follower agents converging to the state of leader asymptotically. Two numerical simulations are also given to verify the effectiveness of the theoretical analysis.
MSC:
93A14Decentralized systems
93C85Automated control systems (robots, etc.)
37N35Dynamical systems in control
68T42Agent technology (AI aspects)
References:
[1]Yu, W. W.; Chen, G. R.; Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems, Automatica 46, 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[2]Xiao, Feng; Wang, Long: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE trans automat control 53, 1804-1816 (2008)
[3]Hu, J.; Lin, Y. S.: Consensus control for multi-agent systems with double-integrator dynamics and time delays, Iet control theor appl 4, 109-118 (2010)
[4]Gao, L. X.; Yan, H. J.; Jin, D.: Consensus problems in multi-agent systems with double integrator model, Chin phys B 19, 050520 (2010)
[5]Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE trans automat control 49, 1520-1533 (2004)
[6]Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE trans automat control 50, 655-661 (2005)
[7]Jiang, F. C.; Wang, L.: Consensus seeking of high-order dynamic multi-agent systems with fixed and switching topologies, Int J control 83, 404-420 (2010) · Zbl 1184.93008 · doi:10.1080/00207170903177774
[8]Yu, W.; Chen, G.; Cao, M.; Kurths, J.: Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics, IEEE trans syst man cybern B 40, 881-891 (2010)
[9]Liu, X.; Chen, T.; Lu, W.: Consensus problem in directed networks of multi-agents via nonlinear protocols, Phys lett A 373, 3122-3127 (2009) · Zbl 1233.34012 · doi:10.1016/j.physleta.2009.06.054
[10]Hong, Y. G.; Hu, J. P.; Gao, L.: Traching control for multi-agent consensus with an active leader and variable topology, Automatica 42, 1177-1182 (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[11]Lu, X. B.; Qin, B. Z.: Adaptive cluster synchronization in complex dynamical networks, Phys lett A 373, 3650-3658 (2009) · Zbl 1232.05219 · doi:10.1016/j.physleta.2009.08.013
[12]Lu, X. Q.; Austin, F.; Chen, S. H.: Cluster consensus of second-order multi-agent systems via pinning control, Chin phy B 19 (2010)
[13]Gu, D.; Wang, Z.: Leader-follower flocking: algorithms and experiments, IEEE trans control syst technol 17, 1211-1219 (2009)
[14]Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE trans automat control 51, 401-420 (2006)
[15]Su, H.; Wang, X.; Lin, Z.: Flocking of multi-agents with a virtual leader, IEEE trans automat control 54, 293-307 (2009)
[16]Su, H.; Wang, X.; Yang, W.: Flocking in multi-agent systems with multiple virtual leaders, Asian J control 10, 238-245 (2008)
[17]Savkin, A. V.: Coordination collective motion of groups of autonomous mobile robots:analysis of vicsek’s model, IEEE trans automat control 49, 981-982 (2004)
[18]Fax, A.; Murray, R.: Information flow and cooperative control of vehicle formations, IEEE trans automat control 49, 1465-1476 (2004)
[19]Hu, J. P.; Hong, Y. G.: Leader-following coordination of multi-agent systems with coupling time delays, Physica A 374, 853-863 (2007)
[20]Hu, J. P.; Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement, Automatica 46, 1382-1387 (2010) · Zbl 1204.93011 · doi:10.1016/j.automatica.2010.05.020
[21]Lin, P.; Jia, Y. M.: Distributed rotating formation control of multi-agent systems, Syst control lett 59, 587-595 (2010) · Zbl 1201.93010 · doi:10.1016/j.sysconle.2010.06.015
[22]Wang, X. L.; Hong, Y. G.; Huang, J.: A distributed control approach to a robust output regulation problem for multi-agent linear systems, IEEE trans automat control 55, 2891-2895 (2010)
[23]Hong, Y. G.; Chen, G. R.; Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, 846-850 (2008)
[24]Lin, P.; Jia, Y.: Robust H-infinity consensus analysis of a class of second-order multi-agent systems with uncertainty, Iet control theor appl 4, 487-498 (2010)
[25]Zhang, W. G.; Zeng, D. L.; Guo, Z. K.: H-infinity consensus control of a class of second-order multi-agent systems without relative velocity measurement, Chin phys B 19 (2010)
[26]Xiao, F.; Wang, L.; Chen, J.; Gao, Y. P.: Finite-time formation control for multi-agent system, Automatic 45, 2605-2611 (2009) · Zbl 1180.93006 · doi:10.1016/j.automatica.2009.07.012
[27]Zhang, Q.; Chen, S. H.; Guo, W. L.: Adaptive consensus problem of leader-follower multi-agent system, Chin phys lett 27 (2010)
[28]Xu, Y. H.; Zhou, W. N.; Fang, J. A.: Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling, Phys lett A 374, 673-1677 (2010)
[29]Zhou, J.; Lu, J.; Lü, J.: Adaptive synchronization of an uncertain complex dynamical network, IEEE trans automat control 51, 652-656 (2006)
[30]Zhang, L. P.; Jiang, H. B.: Impulsive generalized synchronization for a class of nonlinear discrete chaotic systems, Commun nonlinear sci numer simul 16, 2027-2032 (2011) · Zbl 1221.93171 · doi:10.1016/j.cnsns.2010.07.022
[31]Zhang, Q. J.; Lu, J. A.; Zhao, J. C.: Impulsive synchronization of general continuous and discrete-time complex dynamical networks, Commun nonlinear sci numer simul 15, 1063-1070 (2010) · Zbl 1221.93107 · doi:10.1016/j.cnsns.2009.05.048
[32]Sun, M.; Zeng, C. Y.; Tian, L. X.: Linear generalized synchronization between two complex networks, Commun nonlinear sci numer simul 15, 2162-2167 (2010) · Zbl 1222.93088 · doi:10.1016/j.cnsns.2009.08.010
[33]Xu, H.; Teo, K. L.: Stabilizability of discrete chaotic systems via unified impulsive control, Phys lett A 374, 235-240 (2009)
[34]Liu, B.; Liu, X.; Chen, G.; Wang, H.: Robust impulsive synchronization of uncertain dynamical networks, IEEE trans circuits syst I 52, 1431-1441 (2005)
[35]Jiang, H. B.; Bi, Q. S.: Impulsive synchronization of networked nonlinear dynamical systems, Phys lett A 374, 2723-2729 (2010)
[36]ZK. Li, Z. Duan, S. Huang, Leader-follower consensus of multi-agent systems. In: Proceedings of the 2009 conference on American Control Conference 2009; St. Louis, Missouri, USA, p.3256 – 3261.