zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance. (English) Zbl 1239.93033
Summary: In this paper, the tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance are investigated. Based on LaSalle’s invariant set theorem, a robust adaptive controller is contrived to acquire tracking control and generalized projective synchronization and parameter identification simultaneously. It is proved theoretically that the proposed scheme can allow us to drive the hyperchaotic system to any desired reference signals, including hyperchaotic signals, chaotic signals, periodic orbits or fixed value by the given scaling factor. The presented simulation results further demonstrate that the proposed method is effective and robust.
93B35Sensitivity (robustness) of control systems
93C40Adaptive control systems
93B30System identification
34H10Chaos control (ODE)
[1]Wang, G. R.; Yu, X. L.; Chen, S. G.: Chaotic control, (2001)
[2]Ngueuteu, G. S. M.; Yamapi, R.; Woafo, P.: Effects of higher nonlinearity on the dynamics and synchronization of two coupled electromechanical devices, Commun nonlinear sci numer simul 13, 1213-1240 (2008) · Zbl 1221.70038 · doi:10.1016/j.cnsns.2006.09.013
[3]Cao, Z. J.; Li, P. F.; Zhang, H.; Xie, F. G.; Hu, G.: Turbulence control with local pacing and its implication in cardiac defibrillation, Chaos 17, 0151071-0151079 (2007) · Zbl 1159.37335 · doi:10.1063/1.2713688
[4]Guo, W. L.; Chen, S. H.; Zhou, H.: A simple adaptive-feedback controller for chaos synchronization, Chaos soliton fract 39, 316-321 (2009) · Zbl 1197.93099 · doi:10.1016/j.chaos.2007.01.096
[5]Holstein-Rathlou, N. H.; Yip, K. P.; Sosnovtseva, O. V.; Mosekildem, E.: Synchronization phenomena in nephron – nephron interaction, Chaos 11, 417-426 (2001)
[6]Feki, M.: An adaptive chaos synchronization scheme applied to secure communication, Chaos soliton fract 18, 141-148 (2003) · Zbl 1048.93508 · doi:10.1016/S0960-0779(02)00585-4
[7]Schwartz, I. B.; Triandaf, I.: Tracking unstable orbits in experiments, Phys rev A 46, 7439-7444 (1992)
[8]Wang, X. Y.; Wu, X. J.: Tracking control and synchronization of four-dimension hyperchaotic Rössler system, Chaos 16, 033121-033128 (2006) · Zbl 1146.93363 · doi:10.1063/1.2213677
[9]Li, J.; Lin, H.; Li, N.: Chaotic synchronization with diverse structures based on tracking control, Acta phys sin 55, 3992-3997 (2006) · Zbl 1202.93119
[10]Li, Z.; Chen, G.; Shi, S.; Han, C.: Robust adaptive tracking control for a class of uncertain chaotic systems, Phys lett A 310, 40-43 (2003) · Zbl 1011.37055 · doi:10.1016/S0375-9601(03)00115-4
[11]Meng, J.; Wang, X. Y.: Generalized projective synchronization of a class of delayed neural networks, Modern phys lett B 22, 181-190 (2008) · Zbl 1158.93026 · doi:10.1142/S0217984908014596
[12]Li, C. P.; Yan, J. P.: Generalized projective synchronization of chaos: the cascade synchronization approach, Chaos soliton fract 30, 140-146 (2006) · Zbl 1144.37370 · doi:10.1016/j.chaos.2005.08.155
[13]Jiang, D. P.; Luo, X. S.; Wang, B. H.; Fang, J. Q.; Jiang, P. Q.: Study on proportional synchronization of hyperchaotic circuit system, Commun theor phys 43, 671-676 (2005)
[14]Min, F. H.; Wang, Z. Q.: Generalized projective synchronization and tracking control of complex dynamous systems, Acta phys sin 57, 0031-0036 (2008) · Zbl 1174.37323
[15]Li, C. L.; Luo, X. S.: Tracking control and projective synchronization in the fifth-order hyperchaotic circuit system based on accelerated factor, Acta phys sin 58, 3759-3764 (2009) · Zbl 1212.37030
[16]Wei, D. Q.; Zhang, B.; Qiu, D. Y.; Luo, X. S.: Adaptive controlling chaos in permanent magnet synchronous motor based on the lasalle theory, Acta phys sin 58, 6026-6029 (2009) · Zbl 1212.37046
[17]Liu, M. H.; Feng, J. C.: A new hyperchaotic system, Acta phys sin 58, 4457-4462 (2009) · Zbl 1212.37036
[18]Yuuichi, Susuki; Yokoi, Yoshihiko; Takashi, Hikihara.: Energy-based analysis of frequency entrainment described by van der Pol and phase-locked loop equations, Chaos 17, 0231081-0231088 (2007) · Zbl 1159.37396 · doi:10.1063/1.2720161
[19]Zhang, Y.; Xu, W.; Fang, T.: Stochastic Hopf bifurcation and chaos of stochastic bonhoeffer – van der Pol system via Chebyshev polynomial approximation, Appl math comput 190, 1225-1236 (2007) · Zbl 1126.37037 · doi:10.1016/j.amc.2007.02.006