zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation. (English) Zbl 1239.93059
Summary: In this paper, a robust control system combining backstepping and sliding mode control techniques is used to realize the synchronization of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. A backstepping sliding mode approach is applied firstly to compensate the uncertainty which occur in the control system. However, the bound of uncertainty is necessary in the design of the backstepping sliding mode controller. To relax the requirement for the bound of uncertainty, an adaptive backstepping sliding mode controller with a simple adaptive law to adapt the uncertainty in real time is designed. The adaptive backstepping sliding mode control system is robust for time-varying external disturbances. The simulation results demonstrate the effectiveness of the control scheme.
93C40Adaptive control systems
93B12Variable structure systems
34H10Chaos control (ODE)
[1]Manyakov, N. V.; Van Hulle, M. M.: Synchronization in monkey visual cortex analyzed with an information-theoretic measure, Chaos 18, 037130 (2008)
[2]Elson, R. C.; Selverston, A. I.; Huerta, R.; Rulkov, N. F.; Rabinovich, M. I.; Abarbanel, H. D. I.: Synchronous behavior of two coupled biological neurons, Phys. rev. Lett. 81, 5692-5695 (1998)
[3]Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. L.; Zhou, C. S.: The synchronization of chaotic systems, Phys. rep. 366, 1-101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[4]Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning, Annu. rev. Physiol. 55, 349-374 (1993)
[5]Mackay, W. A.: Synchronized neuronal oscillations and their role in motor processes, Trends cogn. Sci. 1, 176-183 (1997)
[6]Freund, H. J.: Motor unit and muscle activity in voluntary motor control, Physiol. rev. 63, 387-436 (1983)
[7]Levy, R.; Hutchison, W. D.; Lozano, A. M.; Dostrovsky, J. O.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor, J. neurosci. 20, 7766-7775 (2000)
[8]Wang, J.; Deng, B.; Tsang, K. M.: Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation, Chaos solitons fract. 22, 469-476 (2004) · Zbl 1060.93525 · doi:10.1016/j.chaos.2004.02.029
[9]Wang, Q. Y.; Lu, Q. S.; Chen, G. R.; Guo, D. H.: Chaos synchronization of coupled neurons with gap junctions, Phys. lett. A 356, 17-25 (2006) · Zbl 1160.81304 · doi:10.1016/j.physleta.2006.03.017
[10]Elson, R. C.; Selverston, A. I.; Huerta, R.; Rulkov, N. F.; Rabinovich, M. I.; Abarbanel, H. D. I.: Synchronous behavior of two coupled biological neurons, Phys. rev. Lett. 81, 5692-5695 (1999)
[11]Che, Y. Q.; Wang, J.; Zhou, S. S.; Deng, B.: Robust synchronization control of coupled chaotic neurons under external electrical stimulation, Chaos solitons fract. 40, 1333-1342 (2009) · Zbl 1197.37110 · doi:10.1016/j.chaos.2007.09.014
[12]Cornejo-Pérezand, O.; Femat, R.: Unidirectional synchronization of Hodgkin – Huxley neurons, Chaos solitons fract. 25, 43-53 (2005) · Zbl 1092.37539 · doi:10.1016/j.chaos.2004.10.006
[13]Wang, J.; Deng, B.; Fei, X. Y.: Synchronizing two coupled chaotic neurons in external electrical stimulation using backstepping control, Chaos solitons fract. 29, 182-189 (2006)
[14]Wang, J.; Deng, B.; Fei, X. Y.: Chaotic synchronization of two coupled neurons via nonlinear control in external electrical stimulation, Chaos solitons fract. 27, 1272-1278 (2006) · Zbl 1092.92503 · doi:10.1016/j.chaos.2005.04.102
[15]Batista, C. A. S.; Lopes, S. R.; Viana, R. L.; Batista, A. M.: Delayed feedback control of bursting synchronization in a scale-free neuronal network, Neural netw. 23, 114-124 (2010)
[16]Popovych, O. V.; Hauptmann, C.; Tass, P. A.: Control of neuronal synchrony by nonlinear delayed feedback, Biol. cybernet. 95, 69-85 (2006) · Zbl 1169.93338 · doi:10.1007/s00422-006-0066-8
[17]Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1, 445-466 (1961)
[18]Hodgkin, A. L.; Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol. 117, 500-544 (1952)
[19]Thompson, C. J.; Bardos, D. C.; Yang, Y. S.; Joyner, K. H.: Nonlinear cable models for cells exposed to electric fields I. General theory and space – clamped solutions, Chaos solitans fract. 10, 1825-1842 (1999) · Zbl 0967.35139 · doi:10.1016/S0960-0779(98)00131-3
[20]Lin, F. J.; Shen, P. H.; Hsu, S. P.: Adaptive backstepping sliding mode control for linear induction motor drive, IEE proc. Elect. power appl. 149, 184-194 (2002)
[21]Rolf, V.; Robert, W.: The electrophysiology of gap junctions and gap junction channels and their mathematical modeling, Biol cell. 94, 501-510 (2002)
[22]Stephen, B.: Cells coupled by voltage-dependent gap junctions: the asymptotic dynamical limit, Biosystems 68, 213-222 (2003)