zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling. (English) Zbl 1239.93060
Summary: This paper investigates the adaptive synchronization between two nonlinearly delay-coupled complex networks with the bidirectional actions and nonidentical topological structures. Based on LaSalle’s invariance principle, some criteria for the synchronization between two coupled complex networks are achieved via adaptive control. To validate the proposed methods, the unified chaotic system as the nodes of the networks are analyzed in detail, and numerical simulations are given to illustrate the theoretical results.
MSC:
93C40Adaptive control systems
93C10Nonlinear control systems
34H10Chaos control (ODE)
References:
[1]Erdos, P.; Renyi, A.: On the evolution of random graphs, Publ math inst hung acad sci 5, 17-60 (1959)
[2]Watts, D. J.; Strogatz, S. H.: Collective dynamics of small-world networks, Nature 393, 440-442 (1998)
[3]Barbaasi, A. L.; Albert, R.: Emergence of scaling in random networks, Science 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[4]Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems, IEEE T circuits I 42, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[5]Li, X.; Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint, IEEE T circuits I 50, 1381-1390 (2003)
[6]Lü, J.; Yu, X.; Chen, G.: Chaos synchronization of general complex dynamical networks, Physica A 334, 281-302 (2004)
[7]Ma, Z.; Liu, Z.; Zhang, G.: A new method to realize cluster synchronization in connected chaotic networks, Chaos 16, 023103 (2006) · Zbl 1146.37330 · doi:10.1063/1.2184948
[8]Wang, L.; Dai, H.; Sun, Y.: Synchronization criteria for a generalized complex delayed dynamical network model, Physica A 383, 703-713 (2007)
[9]Zhou, J.; Xiang, L.; Liu, Z.: Global synchronization in general complex delayed dynamical networks and its applications, Physica A 385, 729-742 (2007)
[10]Wang, X. F.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE T circuits I 49, 54-62 (2002)
[11]Wang, X. F.; Chen, G.: Synchronization in scale-free dynamical networks, Int J bifurcat chaos 12, 187-192 (2002)
[12]Cao, J.; Li, P.; Wang, W.: Global synchronization in arrays of delayed neural networks with constant and coupling, Phys lett A 353, 865-872 (2006)
[13]Lu, W.; Chen, T.: New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D 213, 214-230 (2006) · Zbl 1105.34031 · doi:10.1016/j.physd.2005.11.009
[14]Lu, W.; Chen, T.; Chen, G.: Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D 221, 118-134 (2006) · Zbl 1111.34056 · doi:10.1016/j.physd.2006.07.020
[15]Zhou, J.; Xiang, L.; Liu, Z.: Synchronization in complex delayed dynamical networks with impulsive effects, Physica A 384, 684-692 (2007)
[16]He, G.; Yang, J.: Adaptive synchronization in nonlinearly coupled dynamical networks, Chaos solitons fract 38, 1254-1259 (2008) · Zbl 1154.93424 · doi:10.1016/j.chaos.2007.07.067
[17]Wu, W.; Chen, T.: Global synchronization criteria of linearly coupled neural network systems with time-varying coupling, IEEE T neural networ 19, 319-332 (2008)
[18]Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C.: Synchronization in complex networks, Phys rep 469, 93-153 (2008)
[19]Liu, T.; Zhao, J.; Hill, David J.: Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes, Chaos solitons fract 40, 1506-1519 (2009) · Zbl 1197.34092 · doi:10.1016/j.chaos.2007.09.075
[20]Guo, W.; Austin, F.; Chen, S.: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling, Commun nonlinear sci numer simulat 15, 1631-1639 (2010) · Zbl 1221.34213 · doi:10.1016/j.cnsns.2009.06.016
[21]Li, C. P.; Sun, W. G.; Kurths, J.: Synchronization between two coupled complex networks, Phys rev E 76, 046204 (2007)
[22]Tang, H. W.; Chen, L.; Lu, J. A.; Tse, Chi K.: Adaptive synchronization between two complex networks with nonidentical topological structures, Physica A 387, 5623-5630 (2008)
[23]Li, Y.; Liu, Z.; Zhang, J. B.: Synchronization between different networks, Chinese phys lett 25, 874-877 (2008)
[24]Zheng, S.; Dong, G.; Bi, Q.: Impulsive synchronization of complex networks with non-delayed and delayed coupling, Phys lett A 373, 4255-4259 (2009)
[25]Li, C. P.; Xu, C. X.; Sun, W. G.; Kurths, J.: Outer synchronization of coupled discrete-time networks, Chaos 19, 013106 (2009)
[26]Wu, X.; Zheng, W.; Zhou, J.: Generalized outer synchronization between complex dynamical networks, Chaos 19, 013109 (2009)
[27]Zhou, J.; Chen, T.: Synchronization in general complex delayed dynamical networks, IEEE T circuits I 53, 733-744 (2006)
[28]Lasalle, J. P.: The extent of asymptotic stability, Proc natl acad sci USA 46, No. 3, 363-365 (1960)