zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dead-beat full state hybrid projective synchronization for chaotic maps using a scalar synchronizing signal. (English) Zbl 1239.93066
Summary: This paper provides a contribution to the topic of Full State Hybrid Projective Synchronization (FSHPS) by introducing an observer-based approach that enables synchronization to be achieved via a scalar synchronizing signal. The method is based on a theorem that assures dead-beat synchronization (i.e., exact synchronization in finite time) to a wide class of discrete-time chaotic (hyperchaotic) systems. Two examples, involving the hyperchaotic Grassi-Miller map and the hyperchaotic double scroll map, show that FSHPS can be effectively achieved in finite time using a scalar synchronizing signal only.
MSC:
93C55Discrete-time control systems
References:
[1]Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998)
[2]Mascolo, S.; Grassi, G.: Controlling chaos via backstepping design, Phys rev E 56, No. 5, 6166-6169 (1997)
[3]Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits, IEEE trans circuits syst 38, No. 4, 453-456 (1991)
[4]Brucoli, M.; Carnimeo, L.; Grassi, G.: A method for the synchronization of hyperchaotic circuits, Int J bifurcat chaos 6, No. 9, 1673-1681 (1996) · Zbl 0873.94002 · doi:10.1142/S0218127496001028
[5]Grassi, G.; Mascolo, S.: A system theory approach for designing cryptosystems based on hyperchaos, IEEE trans circuits syst – I: Fundam theory appl 46, No. 9, 1135-1138 (1999) · Zbl 0963.94022 · doi:10.1109/81.788815
[6]Grassi, G.; Mascolo, S.: Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography, Int J circuit theory appl 27, No. 6, 543-553 (1999) · Zbl 0961.37029 · doi:10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4
[7]Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal, IEEE trans circuits syst – I: Fundam theory appl 44, No. 10, 1011-1014 (1997)
[8]Grassi, G.; Mascolo, S.: Synchronizing hyperchaotic systems by observer design, IEEE trans circuits systems – II: Analog dig signal process 46, No. 4, 478-483 (1999) · Zbl 1159.94361 · doi:10.1109/82.755422
[9]Wang, X. F.; Wang, Z. Q.: Synchronizing chaos and hyperchaos with any scalar transmitted signal, IEEE trans circuits syst – I: Fundam theory appl 45, No. 10, 1101-1103 (1998)
[10]Grassi, G.; Mascolo, S.: Synchronisation of hyperchaotic oscillators using a scalar signal, IEE electron lett 34, No. 5, 424-425 (1998)
[11]Miller, D. A.; Grassi, G.: Experimental realization of observer-based hyperchaos synchronization, IEEE trans circuits syst – I: Fundam theory appl 48, No. 3, 366-374 (2001)
[12]Grassi, G.; Miller, D. A.: Theory and experimental realization of observer-based discrete-time hyperchaos synchronization, IEEE trans circuits syst – I: Fundam theory appl 49, No. 3, 373-378 (2002)
[13]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys rev lett 82, No. 15, 3042-3045 (1999)
[14]Chee, C. Y.; Xu, D.: Control of the formation of projective synchronization in lower-dimensional discrete-time systems, Phys lett A 318, 112-118 (2003) · Zbl 1098.37512 · doi:10.1016/j.physleta.2003.09.024
[15]Xu, D.: Control of projective synchronization in chaotic systems, Phys rev E 63, No. 027201, 1-4 (2001)
[16]Xu, D.; Chee, C. Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys rev E 66, No. 046218, 1-5 (2002)
[17]Grassi, G.; Miller, D. A.: Arbitrary observer scaling of all chaotic drive system states via a scalar synchronizing signal, Chaos soliton fract 39, No. 3, 1246-1252 (2009) · Zbl 1197.37135 · doi:10.1016/j.chaos.2007.06.002
[18]Grassi, G.; Miller, D. A.: Projective synchronization via a linear observer: application to time-delay, continuous-time and discrete-time systems, Int J bifurcat chaos 17, No. 4, 1337-1342 (2007) · Zbl 1139.93348 · doi:10.1142/S0218127407017835
[19]Hu, M.; Xu, Z.; Zhang, R.; Hu, A.: Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order, Phys lett A 365, 315-327 (2007)
[20]Lu, J.; Zhang, Q.: Full state hybrid lag projective synchronization in chaotic (hyperchoatic) systems, Phys lett A 372, 1416-1421 (2008) · Zbl 1217.37037 · doi:10.1016/j.physleta.2007.09.051
[21]Hu, M.; Xu, Z.; Zhang, R.; Hu, A.: Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems, Phys lett A 361, 231-237 (2007) · Zbl 1170.93365 · doi:10.1016/j.physleta.2006.08.092
[22]Hu, M.; Xu, Z.; Zhang, R.: Full state hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems, Commun nonlinear sci numer simul 13, 456-464 (2008) · Zbl 1123.37013 · doi:10.1016/j.cnsns.2006.05.003
[23]Hu, M.; Xu, Z.; Zhang, R.: Full state hybrid projective synchronization of a general class of chaotic maps, Commun nonlinear sci numer simul 13, 782-789 (2008) · Zbl 1221.34121 · doi:10.1016/j.cnsns.2006.07.012
[24]Grassi, G.: Propagation of projective synchronization in a series connection of chaotic systems, J franklin inst 347, No. 2, 438-451 (2010) · Zbl 1185.93075 · doi:10.1016/j.jfranklin.2009.10.004
[25]Elhadj, Z.; Sprott, J. C.: The discrete hyperchaotic double scroll, Int J bifurcat chaos 19, No. 3, 1023-1027 (2009) · Zbl 1167.37339 · doi:10.1142/S0218127409023433
[26]Golub, G. H.; Van Loan, C. F.: Matrix computations, (1996)
[27]Baier, G.; Klein, M.: Maximum hyperchaos in generalized henon maps, Phys lett A 151, 281-284 (1990)
[28]Chua, L. O.; Komuro, M.; Matsumoto, T.: The double scroll family. Parts I and II, IEEE trans circuits syst 33, No. 4, 1073-1118 (1986)
[29]Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F.: Power management and power flow control with back-to-back converters in a utility connected microgrid, IEEE trans power syst 25, No. 2, 821-834 (2010)