zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability of reaction-diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. (English) Zbl 1239.93081
Summary: We study the gobal exponential stability of reaction-diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential stability in the mean square for the reaction-diffusion high-order neural networks are established, which are easily verifiable and have a wider adaptive. An example is also discussed to illustrate our results.
MSC:
93D05Lyapunov and other classical stabilities of control systems
35K57Reaction-diffusion equations
35K55Nonlinear parabolic equations
References:
[1]Liao, X.; Liao, Y.: Stability of Hopfield-type neural networks, Sci. China, ser. A 40, 813-816 (1997) · Zbl 0886.68115 · doi:10.1007/BF02878920
[2]Wallis, G.: Stability criteria for unsupervised temporal assocaition networks, IEEE trans. Neural netw. 16, 301-311 (2005)
[3]Wang, C.; Hill, D. J.: Deterministic learning and rapid dynamical pattern recognition, IEEE trans. Neural netw. 18, 617-630 (2007)
[4]Cao, J.; Xiao, M.: Stability and Hopf bifurcation in a simplified BAM neural network with two time delays, IEEE trans. Neural netw. 18, 416-430 (2007)
[5]Gopalsamy, K.; He, X.: Stability in asymmetric Hopfield nets with transmission delays, Physica D 76, 344-358 (1994) · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4
[6]Wang, L.: Comments on ’robust stability for interval networks with time delay by X.F. Liao’, IEEE trans. Neural netw. 13, 250-252 (2002)
[7]Wang, L.: Delayed recurrent neural networks, (2008)
[8]Xu, D.; Zhao, H.; Zhu, H.: Global dynamics of Hopfield neural involving variable delays, Comput. math. Appl. 42, 39-45 (2001) · Zbl 0990.34036 · doi:10.1016/S0898-1221(01)00128-6
[9]Civalleri, P. P.; Gilli, M.; Pandolfi, L.: On stability of cellular neural network with delay, IEEE trans. Circuits syst., I: fundam. Theory appl. 40, 157-165 (1993) · Zbl 0792.68115 · doi:10.1109/81.222796
[10]Hopfield, J. J.: Neural networks and physical system with emergent collective computational abilities, Proc. nat. Acad. sci. 79, 2554-2558 (1982)
[11]Hopfield, J. J.: Neurons with graded response have collective computational like those of two-state neurons, Proc. nat. Acad. sci. 81, 3088-3092 (1984)
[12]Liao, X.; Gao, Y.: Stability of Hopfield neural networks with reaction–diffusion terms, Acta electron. Sin. 28, 78-82 (2000)
[13]Wang, L.; Xu, D.: Global exponential stability of hopfeild reaction–diffusion neural networks with time-varying delays, Sci. China, (Ser. F) 46, 466-474 (2003) · Zbl 1186.82062 · doi:10.1360/02yf0146
[14]Song, Q.; Zhao, Z.; Li, Y.: Global exponential stability of BAM neural networks with distributed delays and reaction diffusion terms, Phys. lett. A 335, 213-225 (2005) · Zbl 1123.68347 · doi:10.1016/j.physleta.2004.12.007
[15]Wang, L.; Gao, Y.: Global exponential robust stability of reaction–diffusion interval neural networks with time-varying delays, Phys. lett. A 350, 342-348 (2006) · Zbl 1195.35179 · doi:10.1016/j.physleta.2005.10.031
[16]Wang, L.; Xu, D.: Asymptotic behavior of a class of reaction–diffusion equations with delays, J. math. Anal. appl. 281, 439-453 (2003) · Zbl 1031.35065 · doi:10.1016/S0022-247X(03)00112-4
[17]Wang, L.; Zhang, R.; Wang, Y.: Global exponential stability of reaction–diffusion cellular neural networks with S-type distributed time delays, Nonlinear anal. RWA 10, 1101-1113 (2009) · Zbl 1167.35404 · doi:10.1016/j.nonrwa.2007.12.002
[18]Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters, Phys. lett. A 356, 346-352 (2006) · Zbl 1160.37439 · doi:10.1016/j.physleta.2006.03.078
[19]Boukas, E. K.; Shi, P.; Karan, M.; Kaya, C. Y.: Linear discrete-time systems with Markovian jumps and mode dependent time-delay: stability and stabilizability, Math. probl. Eng. 8, 123-133 (2002) · Zbl 1060.93101 · doi:10.1080/10241230212910
[20]Shi, P.; Boukas, E. K.: Ingentaconnect H-control for Markovian jumping linear systems with parametric uncertainty, J. optim. Theory appl. 95, 75-101 (1997) · Zbl 1026.93504 · doi:10.1023/A:1022683311870
[21]Kovacic, M.: Timetable construction with Markovian neural network, Eur. J. Oper. res. 69, 92-96 (1993) · Zbl 0784.90038 · doi:10.1016/0377-2217(93)90094-4
[22]Feng, X.; Loparo, K. A.; Ji, Y.: Stochastic stability properties of jump linear systems, IEEE trans. Automat. control 37, 38-53 (1992)
[23]Wang, Y.; Lu, C.; Ji, G.; Wang, L.: Global exponential stability of high-order Hopfield-type neural networks with S-type distributed time delays, Commun. nonlinear sci. Numer. simul. 16, 3319-3325 (2010)
[24]Liu, X.; Wang, Q.: Impulsive stabilization of high-order Hopfield-type neural networks with time-varying delays, IEEE trans. Neural netw. 19, 71-79 (2008)
[25]Xu, B.; Liu, X.; Liao, X.: Global aysmptotic stability of high-order Hopfield type neural networks with time delays, Comput. math. Appl. 45, 1729-1737 (2003)
[26]Brucoli, M.; Carnimeo, L.; Grassi, G.: Associative memory design using discrete-time second-order neural networks with local interconnections, IEEE trans. Circuits syst. I 44, 153-158 (1997)
[27]Kosmatopoulos, E. B.; Christodoulou, M. A.: Structural properties of gradient recurrent high-order neural networks, IEEE trans. Circuits syst. II 42, 592-603 (1995) · Zbl 0943.68510 · doi:10.1109/82.466645
[28]Kosmatopoulos, E. B.; Polycarpou, M. M.; Christodoulou, M. A.; Ioannou, P. A.: High-order neural network structures for identification of dynamical systems, IEEE trans. Neural netw. 6, 422-431 (1995)
[29]Dembo, A.; Farotimi, O.; Kailath, T.: High-order absolutely stable neural networks, IEEE trans. Circuits syst. 38, 57-65 (1991) · Zbl 0712.92002 · doi:10.1109/31.101303
[30]Arnold, L.: Random dynamical systems, (1998)
[31]Boyd, S. P.; Ghaoui, L. F.; Feron, F.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994)
[32]Temam, R.: Infinity-dimensional dynamical systems in mechanics and physics, (1997)
[33]Hu, S.: Nonlinear analysis and methods, (1993)
[34]Guo, D.; Sun, J.; Liu, Z.: Functional methods of nonlinear ordinary differential equations, (1995)