zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A PDE approach to image restoration problem with observation on a meager domain. (English) Zbl 1239.94005
Summary: We present here a new nonlinear PDE approach to image restoration (the inpainting problem) using a meager blurred image or a finite number of observation points. To this end, one uses a least square approach with the H -1 distributional metric. Some important theoretical and numerical results are provided.
MSC:
94A08Image processing (compression, reconstruction, etc.)
35Q94PDEs in connection with information and communication
References:
[1]Catte, F.; Lions, P.; Morel, M.; Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. anal. 29, 182-193 (1992) · Zbl 0746.65091 · doi:10.1137/0729012
[2]T. Chan, S. Osher, J. Shen, The digital TV filter and nonlinear denoising, Department of Mathematics, University of California, Los Angeles, CA 90095-1555, Technical Report #99-34, October 1999.
[3]Chan, T.; Shen, J.: Image processing and analysis, (2005)
[4]Lysaker, M.; Lundervold, A.; Tai, X. -C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE trans. Image process. 12, No. 12, 1579-1590 (2003)
[5]Marquina, A.; Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. comput. 22, 387-405 (2000) · Zbl 0969.65081 · doi:10.1137/S1064827599351751
[6]S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, Using geometry and iterated refinement for inverse problems (1): total variation based image restoration, Department of Mathematics, UCLA, LA, CA 90095, CAM Report #04-13, 2004.
[7]Osher, S.; Fedkiw, R.: Level set methods and dynamic implicit surfaces, (2003)
[8]Osher, S.; Solé, A.; Vese, L.: Image decomposition and restoration using total variation minimization and the H-1 norm, SIAM J. Multiscale model. Simul. 1, No. 2, 349-370 (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[9]Perona, P.; Malik, J.: Scale-space and edge detection using anisotropic diffusion, IEEE trans. Pattern anal. Mach intell. 12, 629-639 (1990)
[10]Rudin, L.; Osher, S.; Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[11]Barbu, T.; Barbu, V.; Biga, V.; Coca, D.: A PDE variational approach to image denoising and restorations, Nonlinear anal. RWA 10, 1351-1361 (2009) · Zbl 1169.35341 · doi:10.1016/j.nonrwa.2008.01.017
[12]Kim, S.: PDE-based image restoration: a hybrid model and color image denoising, IEEE trans. Image processing 15, No. 5, 1163-1170 (2006)
[13]V.B. Surya Prasath, A. Singh, Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising, J. Appl. Math. doi:10.1155/2010/763847. · Zbl 1189.94024 · doi:10.1155/2010/763847
[14]Jin, Z.; Yang, X.: Analysis of a new variational model for multiplicative noise removal, J. math. Anal. appl. 362, 415-426 (2010) · Zbl 1191.68788 · doi:10.1016/j.jmaa.2009.08.036
[15]Kim, S.; Lim, H.: A non-convex diffusion model for simultaneous image denoising and edge enhancement, Electron. J. Differential equations, 175-192 (2007) · Zbl 1112.35096 · doi:emis:journals/EJDE/conf-proc/15/k1/abstr.html
[16]Brezis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis (1971) · Zbl 0278.47033
[17]Barbu, V.: Nonlinear differential equations of monotone type in Banach spaces, (2010)
[18]Brezis, H.; Strauss, W.: Semilinear elliptic equations in L1, J. math. Soc. Japan 25, 565-590 (1975)
[19]A. Kalaitzis, Image Inpainting with Gaussian Processes, Master of Science Thesis, School of Informatics, University of Edinburgh, 2009.
[20]Chan, T.; Shen, J.: Mathematical models for local nontexture inpaintings, SIAM J. Appl. math. 62, No. 3, 1019-1043 (2001) · Zbl 1050.68157 · doi:10.1137/S0036139900368844
[21]M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image Inpainting. SIGGRAPH 2000, 417-424.
[22]Cao, Y.; Yin, J.; Liu, Q.; Li, M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration, Nonlinear anal. RWA 11, 253-261 (2010) · Zbl 1180.35378 · doi:10.1016/j.nonrwa.2008.11.004
[23]Prasath, V. B. S.; Singh, A.: A hybrid convex variational model for image restoration, Appl. math. Comput. 215, 3655-3664 (2010) · Zbl 1185.94016 · doi:10.1016/j.amc.2009.11.003
[24]Jin, Z.; Yang, X.: Strong solutions for the generalized perona–malik equation for image restoration, Nonlinear anal. 73, 1077-1084 (2010) · Zbl 1194.35503 · doi:10.1016/j.na.2010.04.039
[25]Janev, M.: Fully fractional anisotropic diffusion for image denoising, Math. comput. Model. 54, 729-741 (2011)
[26]Liu, X.; Huang, L.: Split Bregman iteration algorithm for total bounded variation regularization based image deblurring, J. math. Anal. appl. 372, 486-495 (2010) · Zbl 1202.94062 · doi:10.1016/j.jmaa.2010.07.013
[27]Guo, Z.; Liu, Q.; Sun, J.; Wu, B.: Reaction–diffusion systems with-growth for image denoising, Nonlinear anal. RWA 12, 2904-2918 (2011) · Zbl 1219.35340 · doi:10.1016/j.nonrwa.2011.04.015