zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact traveling wave solutions for a generalized Hirota-Satsuma coupled KdV equation by Fan sub-equation method. (English) Zbl 1241.35178
Summary: In this Letter, the Fan sub-equation method is used to construct exact solutions of a generalized Hirota-Satsuma coupled KdV equation. Many exact traveling wave solutions are successfully obtained, which contain more general solitary wave solutions and Jacobian elliptic function solutions with double periods. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35C07Traveling wave solutions of PDE
35C08Soliton solutions of PDE
References:
[1]Chen, A. Y.; Li, J. B.: J. math. Anal. appl., J. math. Anal. appl. 369, 758 (2010)
[2]Feng, D. H.; Li, J. B.: Phys. lett. A, Phys. lett. A 369, 255 (2007)
[3]Yan, Z. Y.: Phys. lett. A, Phys. lett. A 292, 100 (2001)
[4]Fan, E. G.: Phys. lett. A, Phys. lett. A 277, 212 (2000)
[5]Peng, Y. Z.: Phys. lett. A, Phys. lett. A 314, 401 (2003)
[6]Zhou, Y. B.; Wang, M. L.; Miao, T. D.: Phys. lett. A, Phys. lett. A 323, 77 (2004)
[7]Wang, M. L.: Phys. lett. A, Phys. lett. A 213, 279 (1996)
[8]Ganji, D. D.; Rafei, M.: Phys. lett. A, Phys. lett. A 356, 131 (2006)
[9]Jalaal, M.; Ganji, D. D.; Ahmadi, G.: Adv. powder technol., Adv. powder technol. 21, 298 (2010)
[10]Jalaal, M.; Ganji, D. D.: Adv. powder technol., Adv. powder technol. 22, 58 (2011)
[11]Jalaal, M.; Ganji, D. D.: Powder technol., Powder technol. 198, 82 (2010)
[12]Tari, H.; Ganji, D. D.; Rostamian, M.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 8, 203 (2007)
[13]Joneidi, A. A.; Ganji, D. D.; Babaelahi, M.: Int. commun. Heat mass trans., Int. commun. Heat mass trans. 36, 757 (2009)
[14]M. Jalaal, D.D. Ganji, G. Ahmadi, Asia-Pac. J. Chem. Eng. (2010), doi:10.1002/apj.492, in press.
[15]Ganji, D. D.; Abdollahzadeh, M.: Appl. math. Comput., Appl. math. Comput. 206, 438 (2008)
[16]Shateri, M.; Ganji, D. D.: Int. J. Differ. equ., Int. J. Differ. equ. 2010 (2010)
[17]Yomba, E.: Phys. lett. A, Phys. lett. A 336, 463 (2005)
[18]Fan, E. G.: Chaos solitons fractals, Chaos solitons fractals 16, 819 (2003)
[19]Chen, Y.; Wang, Q.; Li, B.: Chaos solitons fractals, Chaos solitons fractals 22, 675 (2004)
[20]Hu, J. Q.: Chaos solitons fractals, Chaos solitons fractals 23, 391 (2005)
[21]Zhang, S.; Xia, T. C.: Phys. lett. A, Phys. lett. A 356, 119 (2006)
[22]Yomba, E.: Chaos solitons fractals, Chaos solitons fractals 27, 187 (2006)
[23]El-Wakil, S. A.; Abdou, M. A.: Chaos solitons fractals, Chaos solitons fractals 36, 343 (2008)
[24]Feng, D. H.; Luo, G. X.: Appl. math. Comput., Appl. math. Comput. 215, 1949 (2009)
[25]Wu, Y. T.; Geng, X. G.; Hu, X. B.; Zhu, S. M.: Phys. lett. A, Phys. lett. A 255, 259 (1999)
[26]Hirota, R.; Satsuma, J.: Phys. lett. A, Phys. lett. A 85, 407 (1981)
[27]Fan, E. G.: Phys. lett. A, Phys. lett. A 282, 18 (2001)
[28]Fan, E. G.; Hon, B. Y. C.: Phys. lett. A, Phys. lett. A 292, 335 (2002)
[29]Ganji, D. D.; Rafei, M.: Phys. lett. A, Phys. lett. A 356, 131 (2006)
[30]Zhang, J. L.; Wang, M. L.; Wang, Y. M.; Fang, Z. D.: Phys. lett. A, Phys. lett. A 350, 103 (2006)
[31]Ali, A. H. A.: Phys. lett. A, Phys. lett. A 363, 420 (2007)
[32]Abbasbandy, S.: Phys. lett. A, Phys. lett. A 361, 478 (2007)
[33]Zhang, H. Q.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 12, 1120 (2007)
[34]Zayed, E. M. E.; Zedan, H. A.; Gepreel, K. A.: Chaos solitons fractals, Chaos solitons fractals 22, 285 (2004)
[35]Kaya, D.: Appl. math. Comput., Appl. math. Comput. 147, 69 (2004)
[36]Rady, A. S. A.; Osman, E. S.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 15, 264 (2010)