zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems. (English) Zbl 1241.35192

Summary: We study the existence and multiplicity results for the nonlinear Schrödinger-Poisson systems

-Δu+V(x)u+K(x)ϕ(x)u=f(x,u),in 3 ,-Δϕ=K(x)u 3 ,in 3 ·(*)

Under certain assumptions on V,K and f, we obtain at least one nontrivial solution for (*) without assuming the Ambrosetti and Rabinowitz condition by using the mountain pass theorem, and obtain infinitely many high energy solutions when f(x,·) is odd by using the fountain theorem.

35Q55NLS-like (nonlinear Schrödinger) equations
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
35A01Existence problems for PDE: global existence, local existence, non-existence
35A15Variational methods (PDE)
[1]Benci, V.; Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. methods nonlinear anal. 11, 283-293 (1998) · Zbl 0926.35125
[2]D’aprile, T.; Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. roy. Soc. Edinburgh sect. A 134, 893-906 (2004) · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[3]Ambrosetti, A.; Malchiodi, A.; Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. ration. Mech. anal. 159, 253-271 (2001) · Zbl 1040.35107 · doi:10.1007/s002050100152
[4]Bartsch, T.; Pankov, A.; Wang, Z.: Nonlinear Schrödinger equations with steep potential well, Commun. contemp. Math. 3, 549-569 (2001) · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[5]Bartsch, T.; Wang, Z.: Existence and multiple results for some superlinear elliptic problems on RN, Comm. partial differential equations 20, 1725-1741 (1995) · Zbl 0837.35043 · doi:10.1080/03605309508821149
[6]Ding, Y.; Lee, C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. differential equations 222, 137-163 (2006) · Zbl 1090.35077 · doi:10.1016/j.jde.2005.03.011
[7]Jeanjean, L.: On the existence of bounded palais–Smale sequences and applications to a landesman–lazer type problem set on RN, Proc. roy. Soc. Edinburgh sect. A 129, 704-710 (1999) · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[8]Liu, Z.; Van Heerden, F. A.; Wang, Z.: Nodal type bound states of Schrödinger equations via invariant set and minimax methods, J. differential equations 214, 358-390 (2005) · Zbl 1210.35044 · doi:10.1016/j.jde.2004.08.023
[9]Zou, W.: Variant Fountain theorems and their applications, Manuscripta math. 104, 343-358 (2001) · Zbl 0976.35026 · doi:10.1007/s002290170032
[10]Ambrosetti, A.: On Schrödinger–Poisson systems, Milan J. Math. 76, 257-274 (2008) · Zbl 1181.35257 · doi:10.1007/s00032-008-0094-z
[11]Ambrosetti, A.; Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem, Commun. contemp. Math. 10, 391-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[12]Ruiz, D.: Semiclassical states for coupled Schrödinger–Maxwell equations concentration around a sphere, Math. models methods appl. Sci. 15, 141-161 (2005) · Zbl 1074.81023 · doi:10.1142/S0218202505003939
[13]D’avenia, P.: Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations, Adv. nonlinear stud. 2, 177-192 (2002) · Zbl 1007.35090
[14]Mercuri, C.: Positive solutions of non-linear Schrödinger–Poisson systems with radial potentials vanishing at infinity, Rend. acc. Naz. lincei 19, 211-227 (2008) · Zbl 1200.35098 · doi:10.4171/RLM/520 · doi:http://www.ems-ph.org/journals/show_abstract.php?issn=1120-6330&vol=19&iss=3&rank=5
[15]Zhao, L.; Zhao, F.: Positive solutions for Schrödinger–Poisson equations with a critical exponent, Nonlinear anal. 70, 2150-2164 (2009) · Zbl 1156.35374 · doi:10.1016/j.na.2008.02.116
[16]Azzollini, A.; Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. math. Anal. appl. 345, 90-108 (2008) · Zbl 1147.35091 · doi:10.1016/j.jmaa.2008.03.057
[17]Chen, S.; Tang, C.: High energy solutions for the Schrödinger–Maxwell equations, Nonlinear anal. 71, 4927-4934 (2009) · Zbl 1175.35142 · doi:10.1016/j.na.2009.03.050
[18]Li, Q.; Su, H.; Wei, Z.: Existence of infinitely many large solutions for the nonlinear Schrödinger–Maxwell equations, Nonlinear anal. 72, 4264-4270 (2010) · Zbl 1189.35081 · doi:10.1016/j.na.2010.02.002
[19]Wang, Z.; Zhou, H.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in R3, Discrete contin. Dyn. syst. 18, 809-816 (2007) · Zbl 1133.35427 · doi:10.3934/dcds.2007.18.809
[20]Zhao, L.; Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations, J. math. Anal. appl. 346, 155-169 (2008) · Zbl 1159.35017 · doi:10.1016/j.jmaa.2008.04.053
[21]Bartsch, T.: Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear anal. 20, 1205-1216 (1993) · Zbl 0799.35071 · doi:10.1016/0362-546X(93)90151-H
[22]Miyagaki, O. H.; Souto, A. M. S.: Superlinear problems without ambrosetti and rabinowitz growth condition, J. differential equations 245, 3628-3638 (2008) · Zbl 1158.35400 · doi:10.1016/j.jde.2008.02.035
[23]Costa, D. G.; Magalhães, C. A.: Variational elliptic problems which are nonquadratic at infinity, Nonlinear anal. 23, 1401-1412 (1994) · Zbl 0820.35059 · doi:10.1016/0362-546X(94)90135-X
[24]Willem, M.: Minimax theorems, (1996)
[25]Evans, L. C.: Partial differential equations, (1998)
[26]Bartolo, P.; Benci, V.; Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problem with strong resonance at infinity, Nonlinear anal. 7, 981-1012 (1983) · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[27]Costa, D. G.; Miyagaki, O. H.: Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains, J. math. Anal. appl. 193, 737-755 (1995) · Zbl 0856.35040 · doi:10.1006/jmaa.1995.1264
[28]Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, (1986) · Zbl 0609.58002