zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonhomogeneous wavelet systems in high dimensions. (English) Zbl 1241.42028
The author explores the connections between nonhomogeneous and homogeneous wavelet systems in L 2 ( d ). In particular, it is shown that any inhomogeneous wavelet system yields a homogeneous wavelet system together with a sequence of nonhomogeneous wavelet systems with almost all the properties preserved, and that nonredundant nonhomogeneous wavelet systems have a natural connection to refinable structures. Moreover, a pair of frequency-based nonhomogeneous and nonstationary dual wavelet frames are introduced and characterized in 𝒟 ' ( d ), and it is shown that it is possible to completely separate the perfect reconstruction property of a wavelet system from its stability in various function spaces. As an application of these results, a complete characterization of a pair of nonhomogeneous and nonstationary dual wavelet frames in L 2 ( d ), as well as a characterization of nonstationary tight wavelet frames in L 2 ( d ) is obtained. Finally, the author shows that the type of nonhomogeneous tight wavelet frame considered in this article can be associated with filter banks and be easily modified to achieve directionality in all dimensions.
MSC:
42C40Wavelets and other special systems
42C15General harmonic expansions, frames
65T60Wavelets (numerical methods)
References:
[1]Benedetto, J. J.; Li, S.: The theory of multiresolution analysis frames and applications to filter banks, Appl. comput. Harmon. anal. 5, 389-427 (1998) · Zbl 0915.42029 · doi:10.1006/acha.1997.0237
[2]Candès, E. J.; Donoho, D. L.: New tight frames of curvelets and optimal representations of objects with C2 singularities, Comm. pure appl. Math. 56, 219-266 (2004) · Zbl 1038.94502 · doi:10.1002/cpa.10116
[3]Chui, C. K.: An introduction to wavelets, (1992)
[4]Chui, C. K.; He, W.; Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments, Appl. comput. Harmon. anal. 13, 224-262 (2002) · Zbl 1016.42023 · doi:10.1016/S1063-5203(02)00510-9
[5]Chui, C. K.; He, W.; Stöckler, J.: Nonstationary tight wavelet frames. II. unbounded intervals, Appl. comput. Harmon. anal. 18, 25-66 (2005) · Zbl 1067.42022 · doi:10.1016/j.acha.2004.09.004
[6]Chui, C. K.; Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations, Appl. comput. Harmon. anal. 9, 243-264 (2000) · Zbl 0967.42023 · doi:10.1006/acha.2000.0316
[7]Cohen, A.; Daubechies, I.; Feauveau, J. -C.: Biorthogonal bases of compactly supported wavelets, Comm. pure appl. Math. 45, 485-560 (1992) · Zbl 0776.42020 · doi:10.1002/cpa.3160450502
[8]Cohen, A.; Dyn, N.: Nonstationary subdivision schemes and multiresolution analysis, SIAM J. Math. anal. 27, 1745-1769 (1996) · Zbl 0862.41013 · doi:10.1137/S003614109427429X
[9]Dai, X.; Larson, D. R.; Speegle, D. M.: Wavelet sets in rn, J. Fourier anal. Appl. 3, 451-456 (1997)
[10]Daubechies, I.: Ten lectures on wavelets, CBMS series (1992) · Zbl 0776.42018
[11]Daubechies, I.; Han, B.: Pairs of dual wavelet frames from any two refinable functions, Constr. approx. 20, 325-352 (2004) · Zbl 1055.42025 · doi:10.1007/s00365-004-0567-4
[12]Daubechies, I.; Han, B.; Ron, A.; Shen, Z.: Framelets MRA-based constructions of wavelet frames, Appl. comput. Harmon. anal. 14, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[13]Ehler, M.; Han, B.: Wavelet bi-frames with few generators from multivariate refinable functions, Appl. comput. Harmon. anal. 25, 407-414 (2008) · Zbl 1221.42062 · doi:10.1016/j.acha.2008.04.003
[14]Guo, K.; Kutyniok, G.; Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators, , 189-201 (2006) · Zbl 1099.65148
[15]B. Han, Wavelets, M.Sc. thesis, Institute of Mathematics, the Chinese Academy of Sciences, June 1994.
[16]Han, B.: On dual wavelet tight frames, Appl. comput. Harmon. anal. 4, 380-413 (1997) · Zbl 0880.42017 · doi:10.1006/acha.1997.0217
[17]Han, B.: On a conjecture about MRA Riesz wavelet bases, Proc. amer. Math. soc. 134, 1973-1983 (2006) · Zbl 1084.42023 · doi:10.1090/S0002-9939-05-08211-0
[18]Han, B.: Refinable functions and cascade algorithms in weighted spaces with hölder continuous masks, SIAM J. Math. anal. 40, 70-102 (2008) · Zbl 1161.42017 · doi:10.1137/060661016
[19]Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform, Appl. comput. Harmon. anal. 26, 14-42 (2009) · Zbl 1154.42007 · doi:10.1016/j.acha.2008.01.002
[20]Han, B.: Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space, Appl. comput. Harmon. anal. 29, 330-353 (2010) · Zbl 1197.42021 · doi:10.1016/j.acha.2010.01.004
[21]B. Han, Wavelets and framelets within the framework of nonhomogeneous wavelet systems, in: Proceedings of 13th International Conference on Approximation Theorem, San Antonio, March 2010.
[22]Han, B.; Jia, R. -Q.: Characterization of Riesz bases of wavelets generated from multiresolution analysis, Appl. comput. Harmon. anal. 23, 321-345 (2007) · Zbl 1141.42023 · doi:10.1016/j.acha.2007.02.001
[23]Han, B.; Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl. comput. Harmon. anal. 18, 67-93 (2005) · Zbl 1057.42026 · doi:10.1016/j.acha.2004.09.001
[24]Han, B.; Shen, Z.: Compactly supported symmetric C wavelets with spectral approximation order, SIAM J. Math. anal. 40, 905-938 (2008) · Zbl 1161.42312 · doi:10.1137/060675009
[25]Han, B.; Shen, Z.: Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. approx. 29, 369-406 (2009) · Zbl 1161.42018 · doi:10.1007/s00365-008-9027-x
[26]Hernández, E.; Weiss, G.: A first course on wavelets, (1996) · Zbl 0885.42018
[27]Lai, M. J.: Construction of multivariate compactly supported prewavelets in L2 spaces and pre-Riesz basis in Sobolev spaces, J. approx. Theory 142, 83-115 (2006) · Zbl 1105.42025 · doi:10.1016/j.jat.2006.03.010
[28]Lai, M. J.; Stöckler, J.: Construction of multivariate compactly supported tight wavelet frames, Appl. comput. Harmon. anal. 21, 324-348 (2006) · Zbl 1106.42028 · doi:10.1016/j.acha.2006.04.001
[29]Mallat, S.: A wavelet tour of signal processing, (2009)
[30]Meyer, Y.: Wavelets and operators, (1992)
[31]Ron, A.; Shen, Z.: Affine systems in L2(Rd). II. dual systems, J. Fourier anal. Appl. 3, 617-637 (1997)
[32]Ron, A.; Shen, Z.: Affine systems in L2(Rd): the analysis of the analysis operator, J. funct. Anal. 148, 408-447 (1997) · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079