zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. (English) Zbl 1241.92006
The authors are concerned with existence, uniqueness and global stability of fuzzy cellular neural networks with mixed delays that include a constant delay in the leakage term, time-varying delays and continuously distributed delays. First, sufficient conditions that ensure existence and uniqueness of solutions are established with the help of a contraction mapping theorem. Then, topological degree theory and Lyapunov-Krasovski functionals are employed for the stability analysis. Two numerical examples illustrating the theoretical results are examined.
MSC:
92B20General theory of neural networks (mathematical biology)
34K45Functional-differential equations with impulses
34K20Stability theory of functional-differential equations
65C20Models (numerical methods)
Software:
Matlab
References:
[1]Cao, J.; Wang, J.: Global exponential stability and periodicity of recurrent neural networks with time delays, IEEE trans. Circuits syst. I regul. Pap. 52, 920-931 (2005)
[2]Tan, M.: Asymptotic stability of nonlinear systems with unbounded delays, J. math. Anal. appl. 337, 1010-1021 (2008) · Zbl 1136.93035 · doi:10.1016/j.jmaa.2007.04.019
[3]Tan, M.; Zhang, Y. N.: New sufficient conditions for global asymptotic stability of Cohen–Grossberg neural networks with time-varying delays, Nonlinear anal.: real world appl. 10, 2139-2145 (2009) · Zbl 1163.92307 · doi:10.1016/j.nonrwa.2008.03.022
[4]Chua, L. O.; Yang, L.: Cellular neural networks: theory, IEEE trans. Circuits syst. 35, 1257-1272 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[5]Chua, L. O.; Yang, L.: Cellular neural networks: applications, IEEE trans. Circuits syst. 35, 1273-1290 (1988)
[6]Jiang, H.; Teng, Z.: Global exponential stability of cellular neural networks with time-varying coefficients and delays, Neural networks 17, 1415-1425 (2004) · Zbl 1068.68121 · doi:10.1016/j.neunet.2004.03.002
[7]Park, J. H.: Further result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays, Appl. math. Comput. 182, 1661-1666 (2006) · Zbl 1154.92302 · doi:10.1016/j.amc.2006.06.005
[8]Li, X.; Ding, C.; Zhu, Q.: Synchronization of stochastic perturbed chaotic neural networks with mixed delays, J. franklin inst. 347, 1266-1280 (2010) · Zbl 1202.93057 · doi:10.1016/j.jfranklin.2010.06.001
[9]De Vries, B.; Principe, J. C.: The gamma model–a new neural model for temporal processing, Neural networks 5, 565-576 (1992)
[10]Park, J. H.: An analysis of global robust stability of uncertain cellular neural networks with discrete and distributed delays, Chaos solitons fractals 32, 800-807 (2007) · Zbl 1144.93023 · doi:10.1016/j.chaos.2005.11.106
[11]T. Yang, L. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: theory, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 181–186.
[12]T. Yang, L. Yang, C.W. Wu, L.O. Chua, Fuzzy cellular neural networks: applications, in: Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, 1996, pp. 225–230.
[13]Yuan, K.; Cao, J.; Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing 69, 1619-1627 (2009)
[14]Liu, Z.; Zhang, H.; Wang, Z.: Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays, Neurocomputing 72, 1056-1064 (2009)
[15]Tan, M.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays, Neural process. Lett. 31, 147-157 (2010)
[16]Zhang, Q.; Xiang, R.: Global asymptotic stability of fuzzy cellular neural networks with time-varying delays, Phys. lett. A 372, 3971-3977 (2008) · Zbl 1220.34098 · doi:10.1016/j.physleta.2008.01.063
[17]Xia, Y.; Yang, Z.; Han, M.: Synchronization schemes for coupled identical Yang–Yang type fuzzy cellular neural networks, Commun. nonlinear sci. Numer. simulation 14, 3645-3659 (2009) · Zbl 1221.37227 · doi:10.1016/j.cnsns.2009.01.028
[18]Gopalsamy, K.; Zhang, B. G.: On the delay differential equations with impulses, J. math. Anal. appl. 139, 110-112 (1989) · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[19]Lakshmikantham, V.; Bainov, D. D.; Simenov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[20]Liu, X.; Ballinger, G.: Existence and continuability of solutions for differential equations with delays and state-dependent impulses, Nonlinear anal.: theory methods appl. 51, 33-47 (2002) · Zbl 1015.34069 · doi:10.1016/S0362-546X(01)00847-1
[21]Liu, X.; Ballinger, G.: Uniform asymptotic stability of impulsive delay differential equations, Comput. math. Appl. 41, 903-915 (2001) · Zbl 0989.34061 · doi:10.1016/S0898-1221(00)00328-X
[22]Yang, X.; Li, F.; Long, Y.; Cui, X.: Existence of periodic solution for discrete-time cellular neural networks with complex deviating arguments and impulses, J. franklin inst. 347, 559-566 (2010) · Zbl 1185.93077 · doi:10.1016/j.jfranklin.2009.12.004
[23]Xia, Y.; Wong, P.: Global exponential stability of a class of retarded impulsive differential equations with applications, Chaos solitons fractals 39, 440-453 (2009) · Zbl 1197.34146 · doi:10.1016/j.chaos.2007.04.005
[24]Xia, Y.; Cao, J.; Cheng, S.: Global exponential stability of delayed cellular neural networks with impulses, Neurocomputing 70, 2495-2501 (2007)
[25]Ignatyev, A.; Ignatyev, O.; Soliman, A.: Asymptotic stability and instability of the solutions of systems with impulse action, Math. notes 80, 491-499 (2006) · Zbl 1125.34036 · doi:10.1007/s11006-006-0167-7
[26]Ignatyev, A.: On the stability of invariant sets of systems with impulse effect, Nonlinear anal. 69, 53-72 (2008) · Zbl 1145.34032 · doi:10.1016/j.na.2007.04.040
[27]Li, C.; Sun, J.; Sun, R.: Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. franklin inst. 347, 1186-1198 (2010) · Zbl 1207.34104 · doi:10.1016/j.jfranklin.2010.04.017
[28]Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.: Global exponential stability results for neutral-type impulsive neural networks, Nonlinear anal.: real world appl. 11, 122-130 (2010) · Zbl 1186.34101 · doi:10.1016/j.nonrwa.2008.10.050
[29]Song, Q.; Wang, Z.: Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays, Physica A: stat. Mech. appl. 387, 3314-3326 (2008)
[30]Li, X.: Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects, Neurocomputing 73, 749-758 (2010)
[31]Li, X.: Uniform asymptotic stability and global stability of impulsive infinite delay differential equations, Nonlinear anal.: theory methods appl. 70, 1975-1983 (2009) · Zbl 1175.34094 · doi:10.1016/j.na.2008.02.096
[32]Nieto, J. J.; Rodriguez-Lopez, R.: New comparison results for impulsive integro-differential equations and applications, J. math. Anal. appl. 328, 1343-1368 (2007) · Zbl 1113.45007 · doi:10.1016/j.jmaa.2006.06.029
[33]Saker, S. H.: Oscillation and global attractivity of impulsive periodic delay respiratory dynamics model, Chin. ann. Math. ser. B 26, 511-522 (2005) · Zbl 1096.34053 · doi:10.1142/S0252959905000403
[34]Li, W. T.; Huo, H. F.: Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. comput. Appl. math. 174, 227-238 (2005) · Zbl 1070.34089 · doi:10.1016/j.cam.2004.04.010
[35]Zhen, J.; Ma, Z.; Han, M.: The existence of periodic solutions of the n-species Lotka–Volterra competition systems with impulsive, Chaos solitons fractals 22, 181-188 (2004) · Zbl 1058.92046 · doi:10.1016/j.chaos.2004.01.007
[36]Zhang, X.; Shuai, Z.; Wang, K.: Optimal impulsive harvesting policy for single population, Nonlinear anal.: real world appl. 4, 639-651 (2003) · Zbl 1011.92052 · doi:10.1016/S1468-1218(02)00084-6
[37]Tang, S.; Chen, L.: Density-dependent birth rate, birth pulses and their population dynamic consequences, J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033 · doi:10.1007/s002850100121
[38]Song, Q.; Cao, J.: Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, J. franklin inst. 345, 39-59 (2008) · Zbl 1167.93369 · doi:10.1016/j.jfranklin.2007.06.001
[39]Gu, H.; Jiang, H.; Teng, Z.: Existence and global exponential stability of equilibrium of competitive neural networks with different time scales and multiple delays, J. franklin inst. 347, 719-731 (2010)
[40]Akhmet, M. U.; Turan, M.: The differential equations on time scales through impulsive differential equations, Nonlinear anal.: theory methods appl. 65, 2043-2060 (2006) · Zbl 1110.34006 · doi:10.1016/j.na.2005.12.042
[41]Gopalsamy, K.: Leakage delays in BAM, J. math. Anal. appl. 325, 1117-1132 (2007) · Zbl 1116.34058 · doi:10.1016/j.jmaa.2006.02.039
[42]Peng, S.: Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms, Nonlinear anal.: real world appl. 11, 2141-2151 (2010)
[43]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[44]Li, C.; Huang, T.: On the stability of nonlinear systems with leakage delay, J. franklin inst. 346, 366-377 (2009) · Zbl 1166.93367 · doi:10.1016/j.jfranklin.2008.12.001
[45]Li, X.; Fu, X.; Balasubramaniam, P.; Rakkiyappan, R.: Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations, Nonlinear anal.: real world appl. 11, 4092-4108 (2010) · Zbl 1205.34108 · doi:10.1016/j.nonrwa.2010.03.014
[46]Li, X.; Cao, J.: Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity 23, 1709-1726 (2010) · Zbl 1196.82102 · doi:10.1088/0951-7715/23/7/010
[47]Yang, X.; Cui, X.; Long, Y.: Existence and global exponential stability of periodic solution of a cellular neural networks difference equation with delays and impulses, Neural networks 22, 970-976 (2009) · Zbl 1226.34065 · doi:10.1088/0951-7715/22/10/007
[48]Rakkiyappan, R.; Balasubramaniam, P.: On exponential stability results for fuzzy impulsive neural networks, Fuzzy sets syst. 161, 1823-1835 (2010) · Zbl 1198.34160 · doi:10.1016/j.fss.2009.12.016
[49]Wang, X.; Xu, D.: Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction–diffusion terms, Chaos solitons fractals 42, 2713-2721 (2009) · Zbl 1198.34094 · doi:10.1016/j.chaos.2009.03.177
[50]Li, Z.; Li, K.: Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction–diffusion terms, Chaos solitons fractals 42, 492-499 (2009) · Zbl 1198.35287 · doi:10.1016/j.chaos.2009.01.018
[51]Hou, Y.; Liao, T.; Yan, J.: Stability analysis of Takagi–sugeno fuzzy cellular neural networks with time-varying delays, IEEE trans. Syst. man cybern. Part B: cybern. 37, 720-726 (2007)
[52]Song, Q.; Wang, Z.: Dynamical behaviors of fuzzy reaction–diffusion periodic cellular neural networks with variable coefficients and delays, Appl. math. Modelling 33, 3533-3545 (2009) · Zbl 1185.35129 · doi:10.1016/j.apm.2008.11.017
[53]Xia, Y.; Yang, Z.; Han, M.: Lag synchronization of chaotic delayed Yang–Yang type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification, IEEE trans. Neural networks 20, 1165-1180 (2009)
[54]Xia, Y.: Impulsive effect on the delayed Cohen–Grossberg-type BAM neural networks, Neurocomputing 73, 2754-2764 (2010)
[55]Kwon, O.; Lee, S.; Park, J.: Improved results on stability analysis of neural networks with time-varying delays: novel delay-dependent criteria, Mod. phys. Lett. B 24, 775-789 (2010) · Zbl 1192.93109 · doi:10.1142/S0217984910022858
[56]Kwon, O.; Park, J.: Exponential stability analysis for uncertain neural networks with interval time-varying delays, Appl. math. Comput. 212, 530-541 (2009) · Zbl 1179.34080 · doi:10.1016/j.amc.2009.02.043
[57]Kwon, O.; Park, J.: Delay-dependent stability for uncertain cellular neural networks with discrete and distribute time-varying delays, J. franklin inst. 345, 766-778 (2008) · Zbl 1169.93400 · doi:10.1016/j.jfranklin.2008.04.011