zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Absolutely exponential stability of Lur’e distributed parameter control systems. (English) Zbl 1241.93042
Summary: In this work, absolutely exponential stability of Lur’e distributed parameter control systems with delayed state has been addressed. Delay-dependent sufficient conditions for the absolutely exponential stability in Hilbert spaces are established in terms of Linear Operator Inequalities (LOIs). Finally, the wave equation is given to illustrate our result.
93D20Asymptotic stability of control systems
93C20Control systems governed by PDE
35L05Wave equation (hyperbolic PDE)
[1]Lur’e, A. I.; Postnikov, V. N.: On the theory of stability of control systems, Prikladnaya matematika mehkhanika 8, 246-248 (1944)
[2]Cao, J.; Zhong, S.: New delay-dependent condition for absolute stability of Lur’e control systems with multiple time-delays and nonlinearities, Appl. math. Comput. 194, 250-258 (2007) · Zbl 1193.93143 · doi:10.1016/j.amc.2007.04.034
[3]Han, Q. L.: Robust absolute stability criteria for uncertain Lur’e systems of neutral type, International journal of robust and nonlinear control 18, 278-295 (2008)
[4]Nam, P. T.; Pathirana, P. N.: Improvement on delay dependent absolute stability of Lur’e control systems with multiple time delays, Appl. math. Comput. 216, 1024-1027 (2010) · Zbl 1217.93151 · doi:10.1016/j.amc.2010.01.090
[5]Fridman, E.; Orlov, Y.: Exponential stability of linear distributed parameter systems with time-varying delays, Automatica 45, 194-201 (2009) · Zbl 1154.93404 · doi:10.1016/j.automatica.2008.06.006
[6]Khalil, H. K.: Nonlinear systems, (1996)