zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system. (English) Zbl 1242.34050
Center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of septic polynomial differential systems are investigated. By means of the computer algebra system MATHEMATICA, the first 13 quasi-Lyapunov constants are deduced. Necessary and sufficient center conditions are obtained. It is proved that there exist 13 small amplitude limit cycles bifurcating from the third-order nilpotent critical point.
34C05Location of integral curves, singular points, limit cycles (ODE)
34C07Theory of limit cycles of polynomial and analytic vector fields
34C23Bifurcation (ODE)
34-04Machine computation, programs (ordinary differential equations)
[1]Álvarez, M. J.; Gasull, A.: Monodromy and stability for nilpotent critical points, Int. J. Bifurcat. chaos 15, 1253-1265 (2005) · Zbl 1088.34021 · doi:10.1142/S0218127405012740
[2]Álvarez, M. J.; Gasull, A.: Generating limit cycles from a nilpotent critical point via normal forms, J. math. Anal. appl. 318, 271-287 (2006) · Zbl 1100.34030 · doi:10.1016/j.jmaa.2005.05.064
[3]V.V. Amelkin, N.A Lukashevich, A.N. Sadovskii, Nonlinear Oscillations in the Second Order Systems, BGU Publ., Minsk (in Russian).
[4]Andreev, A. F.: Investigation of the behavior of the integral curves of a system of two differential equations in the neighbourhood of a singular point, Transl. am. Math. soc. 8, 183-207 (1958) · Zbl 0079.11301
[5]Andreev, A. F.; Sadovskii, A. P.; Tsikalyuk, V. A.: The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part, Diff. equat. 39, 155-164 (2003) · Zbl 1067.34030 · doi:10.1023/A:1025192613518
[6]Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G.: Theory of bifurcations of dynamical systems on a plane, (1973)
[7]Chavarriga, J.; García, I.; Giné, J.: Integrability of centers perturbed by quasi – homogeneous polynomials, J. math. Anal. appl. 211, 268-278 (1997) · Zbl 0876.34008 · doi:10.1006/jmaa.1997.5402
[8]Chavarriga, J.; Giacomini, H.; Giné, J.; Llibre, J.: Local analytic integrability for nilpotent centers, Ergodic theory dyn. Syst. 23, 417-428 (2003) · Zbl 1037.34025 · doi:10.1017/S014338570200127X
[9]Farr, W. W.; Li, C.; Labouriau, I. S.; Langford, W. F.: Degenerate Hopf-bifurcation formulas and Hilbert’s 16th problem, SIAM J. Math. anal. 20, 13-29 (1989) · Zbl 0682.58035 · doi:10.1137/0520002
[10]Gasull, A.; Torregrosa, J.: A new algorithm for the computation of the Lyapunov constants for some degenerated critical points, , 4479-4490 (2001) · Zbl 1042.34528 · doi:10.1016/S0362-546X(01)00561-2
[11]Gasull, A.; Giné, J.: Cyclicity versus center problem, Qual. theory dyn. Syst. 9, 101-113 (2010) · Zbl 1210.34049 · doi:10.1007/s12346-010-0022-9
[12]Giacomini, H.; Giné, J.; Llibre, J.: The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems, J. diff. Equat. 227, 406-426 (2006) · Zbl 1111.34026 · doi:10.1016/j.jde.2006.03.012
[13]H. Giacomini, J. Giné, J. Llibre, Corrigendum to: ”The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems” [J. Diff. Equat. 227 (2) (2006), 406 – 426], J. Diff. Equat. 232 (2007) 702. · Zbl 1111.34026 · doi:10.1016/j.jde.2006.03.012
[14]Liu, Y.; Li, J.: Some classical problems about planar vector fields, (2010)
[15]Liu, Y.; Li, J.: Bifurcation of limit cycles and center problem for a class of cubic nilpotent system, Int. J. Bifurcat. chaos 20, 2579-2584 (2010) · Zbl 1202.34064 · doi:10.1142/S0218127410027210
[16]Moussu, R.: Symétrie et forme normale des centres et foyers dégénérés, Ergodic theory dyn. Syst. 2, 241-251 (1982) · Zbl 0509.34027 · doi:10.1017/S0143385700001553
[17]Stróẓyna, E.: H. Żoła¸dek, the analytic and formal normal form for the nilpotent singularity, J. diff. Equat. 179, 479-537 (2002)
[18]Shi, S. L.: On the structure of Poincaré – Lyapunov constants for the weak focus of polynomial vector fields, J. diff. Equat. 52, 52-57 (1984) · Zbl 0534.34059 · doi:10.1016/0022-0396(84)90133-5
[19]Takens, F.: Singularities of vector fields, Inst. hautes études sci. Publ. math. 43, 47-100 (1974) · Zbl 0279.58009 · doi:10.1007/BF02684366 · doi:numdam:PMIHES_1974__43__47_0