zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional sub-equation method and its applications to nonlinear fractional PDEs. (English) Zbl 1242.35217
Summary: A fractional sub-equation method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, the nonlinear time fractional biological population model and (4+1)-dimensional space-time fractional Fokas equation are considered. As a result, three types of exact analytical solutions are obtained.

MSC:
35R11Fractional partial differential equations
26A33Fractional derivatives and integrals (real functions)
35Q92PDEs in connection with biology and other natural sciences
References:
[1]Ablowitz, M. J.; Clarkson, P. A.: Soliton, nonlinear evolution equations and inverse scattering, (1991) · Zbl 0762.35001
[2]Hirota, R.: Phys. rev. Lett., Phys. rev. Lett. 27, 1192 (1971)
[3]Miurs, M. R.: Bäcklund transformation, (1978)
[4]Weiss, J.; Tabor, M.; Carnevale, G.: J. math. Phys., J. math. Phys. 24, 522 (1983)
[5]Wang, M. L.: Phys. lett. A, Phys. lett. A 213, 279 (1996)
[6]Fan, E. G.: Phys. lett. A, Phys. lett. A 300, 243 (2002)
[7]Fan, E. G.: J. phys. A: math. Gen., J. phys. A: math. Gen. 36, 7009 (2003)
[8]Fan, E. G.: Chaos solitons fractals, Chaos solitons fractals 16, 819 (2003)
[9]Fan, E. G.; Dai, H. H.: Comput. phys. Commun., Comput. phys. Commun. 153, 17 (2003)
[10]Fan, E. G.; Hon, Y.: Chaos solitons fractals, Chaos solitons fractals 15, 559 (2003)
[11]Sirendaoreji; Sun, J.: Phys. lett. A, Phys. lett. A 309, 387 (2003)
[12]Yomba, E.: Chaos solitons fractals, Chaos solitons fractals 27, 187 (2007)
[13]Zhang, S.; Xia, T. C.: Phys. lett. A, Phys. lett. A 363, 356 (2007)
[14]Zhang, S.; Xia, T. C.: J. phys. A: math. Theor., J. phys. A: math. Theor. 40, 227 (2007)
[15]Zhang, S.: Appl. math. Comput., Appl. math. Comput. 188, 1 (2007)
[16]Song, L. N.; Zhang, H. Q.: Appl. math. Comput., Appl. math. Comput. 189, 560 (2007)
[17]Wang, M. L.; Li, X. Z.; Zhang, J. L.: Phys. lett. A, Phys. lett. A 363, 96 (2007)
[18]Wang, M. L.; Li, X. Z.; Zhang, J. L.: Phys. lett. A, Phys. lett. A 372, 417 (2008)
[19]El-Sayed, A. M. A.; Rida, S. Z.; Arafa, A. A. M.: Commun. theor. Phys. (Beijing, China), Commun. theor. Phys. (Beijing, China) 52, 992 (2009)
[20]Kolwankar, K. M.; Gangal, A. D.: Chaos, Chaos 6, 505 (1996)
[21]Kolwankar, K. M.; Gangal, A. D.: Pramana J. Phys., Pramana J. Phys. 48, 49 (1997)
[22]Kolwankar, K. M.; Gangal, A. D.: Phys. rev. Lett., Phys. rev. Lett. 80, 214 (1998)
[23]Chen, Y.; Yan, Y.; Zhang, K. W.: J. math. Anal. appl., J. math. Anal. appl. 362, 17 (2010)
[24]G.C. Wu, Comput. Math. Appl. (2010), doi:10.1016/j.camwa.2010.09.010.
[25]Sun, H. G.; Chen, W.: Sci. China ser. E, Sci. China ser. E 52, 680 (2009)
[26]Chen, W.; Sun, H. G.: Mod. phys. Lett. B, Mod. phys. Lett. B 23, 449 (2009)
[27]Cresson, J.: J. math. Phys., J. math. Phys. 44, 4907 (2003)
[28]Ben Adda, F.; Cresson, J.: J. math. Anal. appl., J. math. Anal. appl. 263, 721 (2001)
[29]Jumarie, G.: Comput. math. Appl., Comput. math. Appl. 51, 1367 (2006)
[30]Jumarie, G.: Math. comput. Model., Math. comput. Model. 44, 231 (2006)
[31]Jumarie, G.: Appl. math. Lett., Appl. math. Lett. 22, 1659 (2009)
[32]Wu, G. C.; Lee, E. W. M.: Phys. lett. A, Phys. lett. A 374, 2506 (2010)
[33]Zhang, S.; Zong, Q. A.; Liu, D.; Gao, Q.: Commun. fract. Calc., Commun. fract. Calc. 1, 48 (2010)
[34]He, J. H.; Wu, X. H.: Chaos solitons fractals, Chaos solitons fractals 30, 700 (2006)
[35]Zhang, S.: Nonlinear sci. Lett. A, Nonlinear sci. Lett. A 2, 143 (2010)
[36]Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, (1999)
[37]Lü, Z. S.; Zhang, H. Q.: Commun. theor. Phys. (Beijing, China), Commun. theor. Phys. (Beijing, China) 39, 405 (2003)
[38]Yang, Z. Z.; Yan, Z. Y.: Commun. theor. Phys. (Beijing, China), Commun. theor. Phys. (Beijing, China) 51, 876 (2009)
[39]Zhang, S.; Xia, T. C.: Appl. math. Comput., Appl. math. Comput. 183, 1190 (2006)