zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exact solutions of the generalized Bretherton equation. (English) Zbl 1242.37054
Summary: The generalized Bretherton equation is studied. The Bäcklund transformations between traveling wave solutions of the generalized Bretherton equation and solutions of polynomial ordinary differential equation are constructed. The classification problem for meromorphic solutions of the latter equation is discussed. Several new families of exact solutions for the generalized Brethenton equation are given.
MSC:
37K35Lie-Bäcklund and other transformations
35C07Traveling wave solutions of PDE
34M05Entire and meromorphic solutions (ODE)
References:
[1]Demina, M. V.; Kudryashov, N. A.: Commun. nonlinear sci. Numer. simulat., Commun. nonlinear sci. Numer. simulat. 16, 1127 (2011)
[2]Demina, M. V.; Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 374, 4023 (2010)
[3]Kudryashov, N. A.: J. appl. Math. mech., J. appl. Math. mech. 52, 361 (1988)
[4]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 147, 287 (1990)
[5]Kudryashov, N. A.: J. appl. Math. mech., J. appl. Math. mech. 54, No. 3, 372 (1990)
[6]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 155, 269 (1991)
[7]Kudryashov, N. A.: Phys. lett. A, Phys. lett. A 169, 237 (1992)
[8]Parkes, E. J.; Duffy, B. R.: Comput. phys. Commun., Comput. phys. Commun. 98, 288 (1996)
[9]Parkes, E. J.; Duffy, B. R.; Abbott, P. C.: Phys. lett. A, Phys. lett. A 295, 280 (2002)
[10]Kudryashov, N. A.: Chaos, solitons and fractals, Chaos, solitons and fractals 24, 1217 (2005)
[11]Biswas, A.: Appl. math. Lett., Appl. math. Lett. 22, 208 (2009)
[12]Vernov, S. Yu.: Teor. mat. Fiz., Teor. mat. Fiz. 146, No. 1, 131 (2006)
[13]Kudryashov, N. A.: Commun. nonlinear sci. Numer. simulat., Commun. nonlinear sci. Numer. simulat. 15, 2778 (2010)
[14]Vitanov, N. K.: Commun. nonlinear sci. Numer. simulat., Commun. nonlinear sci. Numer. simulat. 15, 2050 (2010)
[15]Kudryashov, N. A.; Demina, M. V.: Applied mathematics and computation, Applied mathematics and computation 210, 551 (2009)
[16]Hone, A. N. W.: Physica D, Physica D 205, 292 (2005)
[17]Eremenko, A.: J. math. Phys. anal. Geom., J. math. Phys. anal. Geom. 2, No. 3, 278 (2006)
[18]Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, (1965)