zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. (English) Zbl 1242.65124
Summary: A Rosenbrock artificial bee colony algorithm (RABC) that combines Rosenbrock’s rotational direction method with an artificial bee colony algorithm (ABC) is proposed for accurate numerical optimization. There are two alternative phases of RABC: the exploration phase realized by ABC and the exploitation phase completed by the rotational direction method. The proposed algorithm was tested on a comprehensive set of complex benchmark problems, encompassing a wide range of dimensionality, and it was also compared with several algorithms. Numerical results show that the new algorithm is promising in terms of convergence speed, success rate, and accuracy. The proposed RABC is also capable of keeping up with the direction changes in the problems.
MSC:
65K10Optimization techniques (numerical methods)
90C59Approximation methods and heuristics
Software:
CIXL2
References:
[1]Akay, B.; Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization, Information sciences (2010)
[2]Akbari, R.; Mohammadi, A.; Ziarati, K.: A novel bee swarm optimization algorithm for numerical function optimization, Communication in nonlinear science and numerical simulation 15, No. 10, 3142-3155 (2010) · Zbl 1222.90082 · doi:10.1016/j.cnsns.2009.11.003
[3]Alatas, B.: Chaotic bee colony algorithms for global numerical optimization, Expert systems with applications 37, No. 8, 5682-5687 (2010)
[4]Ali, M. M.; Khompatraporn, C.; Zabinsky, Z. B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems, Journal of global optimization 31, No. 4, 635-672 (2005) · Zbl 1093.90028 · doi:10.1007/s10898-004-9972-2
[5]Baykasoglu, A.; Ozbakir, L.; Tapkan, P.: Artificial bee colony algorithm and its application to generalized assignment problem, (2007)
[6]Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S.: Stability analysis of the reproduction operator in bacterial foraging optimization, Theoretical computer science 411, No. 21, 2127-2139 (2010) · Zbl 1190.90285 · doi:10.1016/j.tcs.2010.03.005
[7]Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE transactions on evolutionary computation 10, No. 6, 646-657 (2006)
[8]Caponio, A.; Neri, F.; Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks, Soft computing – A fusion of foundations, methodologies and applications 13, No. 8, 811-831 (2009)
[9]Chelouah, R.; Siarry, P.: A continuous genetic algorithm designed for the global optimization of multimodal functions, Journal of heuristics 6, No. 2, 191-213 (2000) · Zbl 0969.68641 · doi:10.1023/A:1009626110229
[10]Chelouah, R.; Siarry, P.: Genetic and Nelder – Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions, European journal of operational research 148, No. 2, 335-348 (2003) · Zbl 1035.90062 · doi:10.1016/S0377-2217(02)00401-0
[11]Chelouah, R.; Siarry, P.: A hybrid method combining continuous tabu search and Nelder – Mead simplex algorithms for the global optimization of multiminima functions, European journal of operational research 161, No. 3, 636-654 (2005) · Zbl 1071.90035 · doi:10.1016/j.ejor.2003.08.053
[12]Das, S.; Dasgupta, S.; Biswas, A.; Abraham, A.; Konar, A.: On stability of chemotactic dynamics in bacterial-foraging optimization algorithm, IEEE transactions on systems man and cybernetics part A – systems and humans 39, No. 3, 670-679 (2009)
[13]Dasgupta, S.; Das, S.; Abraham, A.; Biswas, A.: Adaptive computational chemotaxis in bacterial foraging optimization: an analysis, IEEE transactions on evolutionary computation 13, No. 4, 919-941 (2009)
[14]Dong, H. B.; He, J.; Huang, H. K.; Hou, W.: Evolutionary programming using a mixed mutation strategy, Information sciences 177, No. 1, 312-327 (2007) · Zbl 1142.68469 · doi:10.1016/j.ins.2006.07.014
[15]García-Martínez, C.; Lozano, M.; Herrera, F.; Molina, D.; Sánchez, A. M.: Global and local real-coded genetic algorithms based on parent-centric crossover operators, European journal of operational research 185, No. 3, 1088-1113 (2008) · Zbl 1146.90532 · doi:10.1016/j.ejor.2006.06.043
[16]Georgieva, A.; Jordanov, I.: A hybrid meta-heuristic for global optimization using low-discrepancy sequences of points, Computers & operations research 37, No. 3, 456-469 (2010) · Zbl 1189.90123 · doi:10.1016/j.cor.2008.07.004
[17]Gong, M. G.; Jiao, L. C.; Zhang, L. N.: Baldwinian learning in clonal selection algorithm for optimization, Information sciences 180, No. 8, 1218-1236 (2010)
[18]Gould, J. L.; Gould, C. G.: The honey bee, (1988)
[19]Hedar, A.; Fukushima, M.: Tabu search directed by direct search methods for nonlinear global optimization, European journal of operational research 170, No. 2, 329-349 (2006) · Zbl 1093.90091 · doi:10.1016/j.ejor.2004.05.033
[20]Herrera, F.; Lozano, M.; Sánchez, A. M.: A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study, International journal of intelligent systems 18, No. 3, 309-338 (2003) · Zbl 1048.68067 · doi:10.1002/int.10091
[21]Hsieh, S. T.; Sun, T. Y.; Lin, C. L.; Liu, C. C.: Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer, IEEE transactions on evolutionary computation 12, No. 2, 242-251 (2008)
[22]Huang, H.; Qin, H.; Hao, Z.; Lim, A.: Example-based learning particle swarm optimization for continuous optimization, Information sciences (2010)
[23]Hvattum, L. M.; Glover, F.: Finding local optima of high-dimensional functions using direct search methods, European journal of operational research 195, No. 1, 31-45 (2009) · Zbl 1156.90440 · doi:10.1016/j.ejor.2008.01.039
[24]Ji, M.; Tang, H.; Guo, J.: A single-point mutation evolutionary programming, Information processing letters 90, No. 6, 293-299 (2004) · Zbl 1176.90442 · doi:10.1016/j.ipl.2004.03.002
[25]Ji, M.; Yang, H.; Yang, Y.; Jin, Z.: A single component mutation evolutionary programming, Applied mathematics and computation 215, No. 10, 3759-3768 (2010) · Zbl 1183.65066 · doi:10.1016/j.amc.2009.10.049
[26]F. Kang, J. Li, H. Li, Z. Ma, Q. Xu, An improved artificial bee colony algorithm, In: IEEE 2nd International Workshop on Intelligent Systems and Applications, Wuhan, China, 2010, pp. 791 – 794.
[27]Kang, F.; Li, J.; Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers & structures 87, No. 13-14, 861-870 (2009)
[28]Kang, F.; Li, J.; Xu, Q.: Virus coevolution partheno-genetic algorithms for optimal sensor placement, Advanced engineering informatics 22, No. 3, 362-370 (2008)
[29]Kao, Y. T.; Zahara, E.: A hybrid genetic algorithm and particle swarm optimization for multimodal functions, Applied soft computing 8, No. 2, 849-857 (2008)
[30]D. Karaboga, An Idea based on Bee Swarm for Numerical Optimization, Tech. Rep. TR-06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[31]Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization 39, No. 3, 459-471 (2007) · Zbl 1149.90186 · doi:10.1007/s10898-007-9149-x
[32]Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm, Applied soft computing 8, No. 1, 687-697 (2008)
[33]Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm, Applied mathematics and computation 214, No. 1, 108-132 (2009) · Zbl 1169.65053 · doi:10.1016/j.amc.2009.03.090
[34]Korošec, P.; Šilc, J.; Filipič, B.: The differential ant-stigmergy algorithm, Information sciences (2010)
[35]Laguna, M.; Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions, Journal of global optimization 33, No. 2, 235-255 (2005) · Zbl 1093.90092 · doi:10.1007/s10898-004-1936-z
[36]Le, M. N.; Ong, Y. S.; Jin, Y.; Sendhoff, B.: Lamarckian memetic algorithms: local optimum and connectivity structure analysis, Memetic computing 1, No. 3, 175-190 (2009)
[37]Lewisa, R. M.; Torczona, V.; Trossetc, M. W.: Direct search methods: then and now, Journal of computational and applied mathematics 124, No. 1-2, 191-207 (2000)
[38]Liang, J. J.; Qin, A. K.; Suganthan, P. N.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE transactions on evolutionary computation 10, No. 3, 281-295 (2006)
[39]Li, X.; Luo, J.; Chen, M.; Wang, N.: An improved shuffled frog-leaping algorithm with extremal optimisation for continuous optimisation, Information sciences (2010)
[40]Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D.: Real-coded memetic algorithms with crossover Hill-climbing, Evolutionary computation 12, No. 3, 273-302 (2004)
[41]Ma, H.; Liao, C.: An analysis of the equilibrium of migration models for biogeography-based optimization, Information sciences 180, No. 18, 3444-3464 (2010) · Zbl 1194.92073 · doi:10.1016/j.ins.2010.05.035
[42]Marinakis, Y.; Marinaki, M.; Dounias, G.: Honey bees mating optimization algorithm for the Euclidean traveling salesman problem, Information sciences (2010)
[43]Mezura-Montes, E.; Miranda-Varela, M. E.; Del Carmen Gómez-Ramón, R.: Differential evolution in constrained numerical optimization: an empirical study, Information sciences 180, No. 22, 4223-4262 (2010)
[44]Moré, J. J.; Garbow, B. S.; Hillstrom, K. E.: Testing unconstrained optimization software, ACM transactions on mathematical software 7, No. 1, 17-41 (1981) · Zbl 0454.65049 · doi:10.1145/355934.355936
[45]Munoz, M. A.; López, J. A.; Caicedo, E.: An artificial beehive algorithm for continuous optimization, International journal of intelligent systems 24, No. 11, 1080-1093 (2009) · Zbl 1187.90328 · doi:10.1002/int.20376
[46]Neri, F.; Toivanen, J.; Cascella, G. L.; Ong, Y. S.: An adaptive multimeme algorithm for designing HIV multidrug therapies, IEEE/ACM transactions on computational biology and bioinformatics 4, No. 2, 264-278 (2007)
[47]Neri, F.; Mininno, E.: Memetic compact differential evolution for Cartesian robot control, IEEE computational intelligence magazine 5, No. 2, 54-65 (2010)
[48]Nguyen, Q. C.; Ong, Y. S.; Lim, M. H.: A probabilistic memetic framework, IEEE transactions on evolutionary computation 13, No. 3, 604-623 (2009)
[49]Ong, Y. S.; Keane, A. J.: Meta-lamarckian learning in memetic algorithm, IEEE transactions on evolutionary computation 8, No. 2, 99-110 (2004)
[50]Ortiz-Boyer, D.; Hervás-Martınez, C.; García-Pedrajas, N.: CIXL2: a crossover operator for evolutionary algorithms based on population features, Journal of artificial intelligence research 24, No. 1, 1-48 (2005) · Zbl 1123.62053 · doi:http://www.jair.org/contents/v24.html
[51]Palmer, J. R.: An improved procedure for orthogonalising the search vectors in rosenbrock’s and swann’s direct search optimisation methods, The computer journal 12, No. 1, 69-71 (1969) · Zbl 0164.46105
[52]Pan, Q. K.; Tasgetiren, M. F.; Suganthan, P. N.; Chua, T. J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Information sciences 181, No. 12, 2455-2468 (2011)
[53]Price, K.; Storn, R. M.; Lampinen, J. A.: Differential evolution: A practical approach to global optimization, (2005)
[54]A.K. Qin, P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proceedings of the IEEE Conference on Evolutionary Computation, Edinburgh, Scotland, September 2005, pp. 1785 – 1791.
[55]Rahnamayan, S.; Tizhoosh, H. R.; Salama, M. M. A.: Opposition-based differential evolution, IEEE transactions on evolutionary computation 12, No. 1, 64-79 (2008)
[56]Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravitational search algorithm, Information sciences 179, No. 13, 2232-2248 (2009) · Zbl 1177.90378 · doi:10.1016/j.ins.2009.03.004
[57]Rosenbrock, H. H.: An automatic method for finding the greatest or least value of a function, The computer journal 3, No. 3, 175-184 (1960)
[58]Sánchez, A. M.; Lozano, M.; García-Martínez, C.; Molina, D.; Herrera, F.: Real-parameter crossover operators with multiple descendents: an experimental study, International journal of intelligent systems 23, No. 2, 246-268 (2008) · Zbl 1140.68543 · doi:10.1002/int.20258
[59]Sánchez, A. M.; Lozano, M.; Villar, P.; Herrera, F.: Hybrid crossover operators with multiple descendents for real-coded genetic algorithms: combining neighborhood-based crossover operators, International journal of intelligent systems 24, No. 5, 540-567 (2009) · Zbl 1178.68651 · doi:10.1002/int.20348
[60]Seeley, T. D.: The wisdom of the hive, (1995)
[61]Shi, Y.; Liu, H.; Gao, L.; Zhang, G.: Cellular particle swarm optimization, Information sciences (2010)
[62]Smith, J. E.: Co-evolving memetic algorithms: a review and progress report, IEEE transactions on systems man and cybernetics part B – cybernetics 37, No. 1, 6-17 (2007)
[63]Socha, K.; Dorigo, M.: Ant colony optimization for continuous domains, European journal of operational research 185, No. 3, 1155-1173 (2008) · Zbl 1146.90537 · doi:10.1016/j.ejor.2006.06.046
[64]Storn, R.; Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11, No. 4, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[65]Sundar, S.; Singh, A.: A swarm intelligence approach to the quadratic minimum spanning tree problem, Information sciences 180, No. 17, 3182-3191 (2010)
[66]Ting, C.; Liao, C.: A memetic algorithm for extending wireless sensor network lifetime, Information sciences 180, No. 24, 4818-4833 (2010)
[67]Tirronen, V.; Neri, F.; Karkkainen, T.; Majava, K.; Rossi, T.: An enhanced memetic differential evolution in filter design for defect detection in paper production, Evolutionary computation 16, No. 4, 529-555 (2008)
[68]Toscano, R.; Lyonnet, P.: A new heuristic approach for non-convex optimization problems, Information sciences 180, No. 10, 1955-1966 (2010) · Zbl 1198.90331 · doi:10.1016/j.ins.2009.12.028
[69]L. Tseng, C. Chen, Multiple trajectory search for large scale global optimization, in: Proceedings of the IEEE Conference on Evolutionary Computation, 2008, pp. 3052 – 3059.
[70]Wang, Y.; Li, B.; Weise, T.; Wang, J.; Yuan, B.; Tian, Q.: Self-adaptive learning based particle swarm optimization, Information sciences (2010)
[71]Whitley, D.; Rana, D.; Dzubera, J.; Mathias, E.: Evaluating evolutionary algorithms, Artificial intelligence 85, No. 1 – 2, 245-276 (1996)
[72]Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster, IEEE transactions on evolutionary computation 3, No. 2, 82-102 (1999)
[73]Yu, E. L.; Suganthan, P. N.: Ensemble of niching algorithms, Information sciences 180, No. 15, 2815-2833 (2010)
[74]Zhang, J.; Sanderson, A. C.: JADE: adaptive differential evolution with optional external archive, IEEE transactions on evolutionary computation 13, No. 5, 945-958 (2009)
[75]Zhu, G.; Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied mathematics and computation 217, No. 7, 3166-3173 (2010) · Zbl 1204.65074 · doi:10.1016/j.amc.2010.08.049