zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A reproducing kernel method for solving nonlocal fractional boundary value problems. (English) Zbl 1242.65144
Summary: We propose a reproducing kernel method for solving singular and nonsingular boundary value problems of integer order based on the reproducing kernel theory. In this letter, we expand the application of reproducing kernel theory to fractional differential equations and present an algorithm for solving nonlocal fractional boundary value problems. The results from numerical examples show that the present method is simple and effective.
MSC:
65L10Boundary value problems for ODE (numerical methods)
34B05Linear boundary value problems for ODE
34A08Fractional differential equations
46E22Hilbert spaces with reproducing kernels
References:
[1]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integral and derivatives, theory and applications, (1993) · Zbl 0818.26003
[2]Kilbas, A. A.; Marzan, S.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differ. equ. 1141, 84-89 (2005) · Zbl 1160.34301 · doi:10.1007/s10625-005-0137-y
[3]Podlubny, I.: Fractional differential equations, (1999)
[4]Lakshmikantham, V.; Vatsala, A. S.: Theory of fractional differential inequalities and applications, Commun. appl. Anal. 11, 395-402 (2007) · Zbl 1159.34006
[5]Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations, Nonlinear anal. TMA 698, 2677-2683 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[6]Ghorbani, A.: Toward a new analytical method for solving nonlinear fractional differential equations, Comput. methods appl. Mech. engrg. 197, 4173-4179 (2008) · Zbl 1194.65091 · doi:10.1016/j.cma.2008.04.015
[7]Hu, Y. Z.; Luo, Y.; Lu, Z. Y.: Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. comput. Appl. math. 215, 220-229 (2008) · Zbl 1132.26313 · doi:10.1016/j.cam.2007.04.005
[8]El-Sayed, A. M. A.; El-Kalla, I. L.; Ziada, E. A. A.: Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. numer. Math. 60, 788-797 (2010) · Zbl 1192.65092 · doi:10.1016/j.apnum.2010.02.007
[9]Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[10]Salem, H. A. H.: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies, J. comput. Appl. math. 224, 565-572 (2009) · Zbl 1176.34070 · doi:10.1016/j.cam.2008.05.033
[11]Zhong, W.; Lin, W.: Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. math. Appl. 59, 1345-1351 (2010) · Zbl 1189.34036 · doi:10.1016/j.camwa.2009.06.032
[12]Rehman, M. Ur; Khan, R. A.: Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. math. Lett. 23, 1038-1044 (2010) · Zbl 1214.34007 · doi:10.1016/j.aml.2010.04.033
[13]Ahmad, B.; Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. math. Comput. 217, 480-487 (2010) · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[14]Cui, M. G.; Lin, Y. Z.: Nonlinear numerical analysis in reproducing kernel space, (2009)
[15]Berlinet, A.; Thomas-Agnan, C.: Reproducing kernel Hilbert space in probability and statistics, (2004)
[16]Geng, F. Z.; Cui, M. G.: Solving singular nonlinear second-order periodic boundary value problems in the reproducing kernel space, Appl. math. Comput. 192, 389-398 (2007) · Zbl 1193.34017 · doi:10.1016/j.amc.2007.03.016
[17]Geng, F. Z.; Cui, M. G.: Solving a nonlinear system of second order boundary value problems, J. math. Anal. appl. 327, 1167-1181 (2007) · Zbl 1113.34009 · doi:10.1016/j.jmaa.2006.05.011
[18]Geng, F. Z.: Solving singular second order three-point boundary value problems using reproducing kernel Hilbert space method, Appl. math. Comput. 215, 2095-2102 (2009) · Zbl 1178.65085 · doi:10.1016/j.amc.2009.08.002
[19]Li, X. Y.; Wu, B. Y.: Reproducing kernel method for singular fourth order four-point boundary value problems, Bull. malays. Math. sci. Soc. 34, 147-151 (2011) · Zbl 1219.34032 · doi:http://math.usm.my/bulletin/html/vol34_1_13.html
[20]Bouboulis, P.; Mavroforakis, M.: Reproducing kernel Hilbert spaces and fractal interpolation, J. comput. Appl. math. 235, 3425-3434 (2011) · Zbl 1226.65009 · doi:10.1016/j.cam.2011.02.003
[21]Mohammadi, M.; Mokhtari, R.: Solving the generalized regularized long wave equation on the basis of a reproducing kernel space, J. comput. Appl. math. 235, 4003-4014 (2011) · Zbl 1220.65143 · doi:10.1016/j.cam.2011.02.012