zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Enhanced multistage differential transform method: application to the population models. (English) Zbl 1242.65151
Summary: We present an efficient computational algorithm, namely, the enhanced multistage differential transform method (E-MsDTM) for solving prey-predator systems. Since the differential transform method (DTM) is based on the Taylor series, it is difficult to obtain accurate approximate solutions in large domain. To overcome this difficulty, the multistage differential transform method (MsDTM) has been introduced and succeeded to have reliable approximate solutions for many problems. In MsDTM, it is the key to update an initial condition in each subdomain. The standard MsDTM utilizes the approximate solution directly to assign the new initial value. Because of local convergence of the Taylor series, the error is accumulated in a large domain. In E-MsDTM, we propose the new technique to update an initial condition by using integral operator. To demonstrate efficiency of the proposed method, several numerical tests are performed and compared with ones obtained by other numerical methods such as MsDTM, multistage variational iteration method (MVIM), and fourth-order Runge-Kutta method (RK4).
65L99Numerical methods for ODE
34A99General theory of ODE
92D25Population dynamics (general)