zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fast direct solver for the integral equations of scattering theory on planar curves with corners. (English) Zbl 1242.65251
Summary: We describe an approach to the numerical solution of the integral equations of scattering theory on planar curves with corners. It is rather comprehensive in that it applies to a wide variety of boundary value problems; here, we treat the Neumann and Dirichlet problems as well as the boundary value problem arising from acoustic scattering at the interface of two fluids. It achieves high accuracy, is applicable to large-scale problems and, perhaps most importantly, does not require asymptotic estimates for solutions. Instead, the singularities of solutions are resolved numerically. The approach is efficient, however, only in the low- and mid-frequency regimes. Once the scatterer becomes more than several hundred wavelengths in size, the performance of the algorithm of this paper deteriorates significantly. We illustrate our method with several numerical experiments, including the solution of a Neumann problem for the Helmholtz equation given on a domain with nearly 10000 corner points.
MSC:
65N38Boundary element methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
References:
[1]A. Anand, J. Ovall, C. Turc, Well conditioned boundary integral equations for two-dimensional sound-hard scattering in domains with corners, J. Integral Equ. Appl. (in press).
[2]Andriulli, F.; Tabacco, A.; Vecchi, G.: Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns, IEEE trans. Antenn. propag. 58, 1614-1624 (2010)
[3]Björck, A.: Numerical methods for least squares problems, (1996) · Zbl 0847.65023
[4]Bremer, J.: On the Nyström discretization of integral operators on planar domains with corners, Appl. comput. Harmon. anal. 32, 45-64 (2012)
[5]Bremer, J.; Gimbutas, Z.; Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures, SIAM J. Sci. comput. 32, 1761-1788 (2010) · Zbl 1215.65045 · doi:10.1137/080737046
[6]Bremer, J.; Rokhlin, V.: Efficient discretization of Laplace boundary integral equations on polygonal domains, J. comput. Phys. 229, 2507-2525 (2010) · Zbl 1185.65219 · doi:10.1016/j.jcp.2009.12.001
[7]Bremer, J.; Rokhlin, V.; Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners, J. comput. Phys. 229, 8259-8280 (2010) · Zbl 1201.65213 · doi:10.1016/j.jcp.2010.06.040
[8]Bruno, O. P.; Ovall, J. S.; Turc, C.: A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains, Computing 84, 149-181 (2009) · Zbl 1176.65139 · doi:10.1007/s00607-009-0031-1
[9]Coifman, R.; Meyer, Y.: Wavelets: Calderón-Zygmund and multilinear operators, (1997)
[10]Colton, D.; Kress, R.: Integral equation methods in scattering theory, (1983) · Zbl 0522.35001
[11]Colton, D.; Kress, R.: Inverse acoustic and electromagnetic scattering theory, (1998)
[12]Englund, J.; Helsing, J.: Stress computations on perforated polygonal domains, Engrg. anal. Boundary elem. 26, 533-546 (2003) · Zbl 1047.74544 · doi:10.1016/S0955-7997(02)00160-1
[13]A. Gillman, P. Young, P. Martinsson, A direct solver with O(n) complexity for integral equations on one-dimensional domains. preprint available at lt;http://arxiv.org/abs/1105.5372gt;.
[14]Gu, M.; Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. comput. 17, No. 4, 848-869 (1996) · Zbl 0858.65044 · doi:10.1137/0917055
[15]Helsing, J.: The effective conductivity of random checkerboards, J. comput. Phys. 230, 1171-1181 (2011) · Zbl 1211.78010 · doi:10.1016/j.jcp.2010.10.033
[16]Helsing, J.: A fast and stable solver for singular integral equations on piecewise smooth curves, SIAM J. Sci. comput. 33, 153-174 (2011) · Zbl 1227.65132 · doi:10.1137/090779218
[17]Helsing, J.; Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning, J. comput. Phys. 227, 8820-8840 (2008) · Zbl 1152.65114 · doi:10.1016/j.jcp.2008.06.022
[18]Helsing, J.; Ojala, R.: Elastostatic computations on aggregates of grains with sharp interfaces, corners, and triple-junctions, J. solids struct. 46 (2009) · Zbl 1176.74053 · doi:10.1016/j.ijsolstr.2009.09.008
[19]Kolm, P.; Jiang, S.; Rokhlin, V.: Quadruple and octuple layer potentials in two dimensions I: Analytical apparatus, Appl. comput. Harmonic anal. 14, 47-74 (2003) · Zbl 1139.35397 · doi:10.1016/S1063-5203(03)00004-6
[20]Kress, R.: A Nyström method for boundry integral equations in domains with corners, Numerische Mathematik 58, 145-161 (1990) · Zbl 0707.65078 · doi:10.1007/BF01385616
[21]Kress, R.: Integral equations, (1999)
[22]Martinsson, P.; Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions, J. comput. Phys. 205 (2006)
[23]Martinsson, P.; Rokhlin, V.; Tygert, M.: On interpolation and integration in finite-dimensional spaces of bounded functions, Commun. appl. Math. comput. Sci. 1, 133-142 (2006) · Zbl 1111.65010 · doi:10.2140/camcos.2006.1.133 · doi:http://pjm.math.berkeley.edu/camcos/2006/1-1/p07.xhtml
[24]Panich, O.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations, Usp. mat. Nauk 20A, 221-226 (1965)
[25]Rokhlin, V.: Solution of acoustic scattering problems by means of second kind integral equations, Wave motion 5, 257-272 (1983) · Zbl 0522.73022 · doi:10.1016/0165-2125(83)90016-1
[26]Rokhlin, V.: Rapid solution of integral equations of scattering theory in two dimensions, J. comput. Phys. 86, 414-439 (1990) · Zbl 0686.65079 · doi:10.1016/0021-9991(90)90107-C
[27]Rokhlin, V.: Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Appl. comput. Harmonic anal. 1, 82-93 (1993) · Zbl 0795.35021 · doi:10.1006/acha.1993.1006
[28]Rokhlin, V.; Greengard, L.: A fast algorithm for particle simulation, J. comput. Phys. 73, 325-348 (1987) · Zbl 0629.65005 · doi:10.1016/0021-9991(87)90140-9
[29]Woolfe, F.; Liberty, E.; Rokhlin, V.; Tygert, M.: A fast randomized algorithm for the approximation of matrices, Appl. comput. Harmonics anal. 25, 355-366 (2008) · Zbl 1155.65035 · doi:10.1016/j.acha.2007.12.002