zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Topological properties of generalized approximation spaces. (English) Zbl 1242.68342
Summary: Rough set theory is a powerful mathematical tool for dealing with inexact, uncertain or vague information. The core concepts of rough set theory are information systems and approximation operators of approximation spaces. Approximation operators draw close links between rough set theory and topology. This paper concerns generalized approximation spaces via topological methods and studies topological properties of rough sets. Classical separation axioms, compactness and connectedness for topological spaces are extended to generalized approximation spaces. Relationships among separation axioms for generalized approximation spaces and relationships between topological spaces and their induced generalized approximation spaces are investigated. An example is given to illustrate a new approach to recover missing values for incomplete information systems by regularity of generalized approximation spaces.
MSC:
68T37Reasoning under uncertainty
54D10Lower separation axioms (T 0 T 3 , etc.)
54D15Higher separation axioms
54D30Compactness of topological spaces
54D05Connected and locally connected topological spaces (general aspects)
References:
[1]Aiello, M.; Van Benthem, J.; Bezhanishvili, G.: Reasoning about space: the modal way, Journal of logic and computation 13, 889-920 (2003) · Zbl 1054.03015 · doi:10.1093/logcom/13.6.889
[2]Chen, D. G.; Zhang, W. X.: Rough sets and topological spaces, Journal of Xi’an jiaotong university 35, No. 12, 1313-1315 (2001) · Zbl 1003.54005
[3]Engelking, R.: General topology, (1977)
[4]Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S.: Continuous lattices and domains, (2003)
[5]Johnstone, P. T.: Stone spaces, (1982)
[6]Kondo, M.: On the structure of generalized rough sets, Information sciences 176, 589-600 (2006) · Zbl 1096.03065 · doi:10.1016/j.ins.2005.01.001
[7]Kortelainen, J.: On the relationship between modified sets, topological spaces and rough sets, Fuzzy sets and systems 61, 91-95 (1994) · Zbl 0828.04002 · doi:10.1016/0165-0114(94)90288-7
[8]Kryszkiewicz, M.: Rough set approach to incomplete information systems, Information sciences 112, 39-49 (1998) · Zbl 0951.68548 · doi:10.1016/S0020-0255(98)10019-1
[9]Kryszkiewicz, M.: Rules in incomplete information systems, Information sciences 113, 271-292 (1999) · Zbl 0948.68214 · doi:10.1016/S0020-0255(98)10065-8
[10]Lashin, E. F.; Kozae, A. M.; Khadra, A. A. Abo; Medhat, T.: Rough set theory for topological spaces, International journal of approximate reasoning 40, 35-43 (2005) · Zbl 1099.68113 · doi:10.1016/j.ijar.2004.11.007
[11]Lin, T. Y.; Liu, Q.: Rough approximate operators: axiomatic rough set theory, Rough sets, fuzzy sets and knowledge discovery, 256-260 (1994) · Zbl 0818.03028
[12]Liu, G. L.: Generalized rough sets over fuzzy lattices, Information sciences 178, No. 6, 1651-1662 (2008) · Zbl 1136.03328 · doi:10.1016/j.ins.2007.11.010
[13]Liu, G. L.; Zhu, W.: The algebraic structures of generalized rough set theory, Information sciences 178, 4105-4113 (2008) · Zbl 1162.68667 · doi:10.1016/j.ins.2008.06.021
[14]Pawlak, Z.: Rough sets, International journal of computer and information sciences 11, 341-356 (1982)
[15]Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[16]Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Information sciences 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[17]Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Information sciences 177, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[18]Pei, D. W.: On definable concepts of rough set models, Information sciences 177, 4230-4239 (2007) · Zbl 1126.68076 · doi:10.1016/j.ins.2007.01.020
[19]Qin, K. Y.; Pei, Z.: On the topological properties of fuzzy rough sets, Fuzzy sets and systems 151, No. 3, 601-613 (2005) · Zbl 1070.54006 · doi:10.1016/j.fss.2004.08.017
[20]Qin, K. Y.; Yang, J. L.; Pei, Z.: Generalized rough sets based on reflexive and transitive relations, Information sciences 178, 4138-4141 (2008) · Zbl 1153.03316 · doi:10.1016/j.ins.2008.07.002
[21]Salama, A. S.: Topological solution of missing attribute values problem in incomplete information tables, Information sciences 180, 631-639 (2010)
[22]Wu, Q. E.; Wang, T.; Huang, Y. X.; Li, J. S.: Topology theory on rough sets, IEEE transactions on systems, man, and cybernetics – part B: cybernetics 38, No. 1, 68-77 (2008)
[23]Wu, W. Z.: A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces, Lnai 3613, 167-174 (2005)
[24]Yao, Y. Y.: Constructive and algebraic methods of the theory of rough sets, Information sciences 109, 21-47 (1998) · Zbl 0934.03071 · doi:10.1016/S0020-0255(98)00012-7
[25]Yao, Y. Y.: Neighborhood systems and approximate retrieval, Information sciences 176, 3431-3452 (2006) · Zbl 1119.68074 · doi:10.1016/j.ins.2006.02.002
[26]Zhang, H. P.; Ouyang, Y.; Wang, Z. D.: Note on generalized rough sets based on reflexive and transitive relations, Information sciences 179, 471-473 (2009) · Zbl 1159.03328 · doi:10.1016/j.ins.2008.10.009
[27]Zhang, W. X.; Wu, W. Z.; Liang, J. Y.; Li, D. Y.: Rough sets theory and methods, (2001)
[28]Zhu, W.: Topological approaches to covering rough sets, Information sciences 177, 1499-1508 (2007) · Zbl 1109.68121 · doi:10.1016/j.ins.2006.06.009
[29]Zhu, W.: Generalized rough sets based on relations, Information sciences 177, 4997-5011 (2007) · Zbl 1129.68088 · doi:10.1016/j.ins.2007.05.037