zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Heterogeneous triopoly game with isoelastic demand function. (English) Zbl 1242.91150
Summary: We analyze a triopolistic market with heterogeneous firms when the demand function is isoelastic. We consider the same heterogeneous firms as E. M. Elabbasy, H. N. Agiza and A. A. Elsadany [Comput. Math. Appl. 57, No. 3, 488–499 (2009; Zbl 1165.91324)] introducing a nonlinearity in the demand function instead of the cost function. Stability conditions of the two equilibrium points and complex dynamics are studied. The main novelty consists of the double route to chaos, via period-doubling bifurcations and via Neimark-Sacker bifurcation. The two routes have important differences from the economic point of view.
91B69Heterogeneous agent models in economics
91A23Differential games (game theory)
91A25Dynamic games
[1]Cournot, A.: Recherches sur les Principes Mathématiques de la Thé orie des Richesses. Hachette, Paris (1838)
[2]Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Physica, A 320, 512–524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[3]Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149, 843–860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[4]Bischi, G.I., Chiarella, C., Kopel, M., Szidarovszky, F.: Nonlinear Oligopolies: Stability and Bifurcations. Springer, New York (2009)
[5]Zhang, J., Da, Q., Wang, Y.: Analysis of nonlinear duopoly game with heterogeneous players. Econ. Model. 24, 138–148 (2007) · doi:10.1016/j.econmod.2006.06.007
[6]Angelini, A., Dieci, R., Nardini, F.: Bifurcation analysis of a dynamic duopoly model with heteregeneous costs and behavioral rules. Math. Comput. Simul. 79, 3179–3196 (2009) · Zbl 1169.91347 · doi:10.1016/j.matcom.2009.04.001
[7]Tramontana, F.: Heterogeneous duopoly with isoelastic demand function. Econ. Model. 27, 350–357 (2010) · doi:10.1016/j.econmod.2009.09.014
[8]Puu, T.: Complex dynamics with three oligopolists. Chaos Solitons Fractals 7, 2075–2081 (1996) · doi:10.1016/S0960-0779(96)00073-2
[9]Agliari, A., Gardini, L., Puu, T.: The dynamics of a triopoly Cournot game. Chaos Solitons Fractals 11, 2531–2560 (2000) · Zbl 0998.91035 · doi:10.1016/S0960-0779(99)00160-5
[10]Agliari, A., Gardini, L., Puu, T.: Global bifurcations of basins in a triopoly game. Int. J. Bifurc. Chaos 12, 2175–2207 (2002) · Zbl 1043.37514 · doi:10.1142/S0218127402005789
[11]Elabbasy, E.M., Agiza, H.N., Elsadany, A.A., El-Metwally, H.: The dynamics of triopoly game with heterogeneous players. Int. J. Nonlinear Sci. 3, 83–90 (2007)
[12]Elabbasy, E.M., Agiza, H.N., Elsadany, A.A.: Analysis of nonlinear triopoly game with heterogeneous players. Comput. Math. Appl. 57, 488–499 (2009) · Zbl 1165.91324 · doi:10.1016/j.camwa.2008.09.046
[13]Puu, T.: Chaos in duopoly pricing. Chaos Solitons Fractals 1, 573–581 (1991) · Zbl 0754.90015 · doi:10.1016/0960-0779(91)90045-B
[14]Dixit, A.: Comparative statics for oligopoly. Int. Econ. Rev. 27, 107–122 (1986) · Zbl 0584.90012 · doi:10.2307/2526609
[15]Farebrother, R.W.: Simplified Samuelson conditions for cubit and quartic equations. Manch. Sch. Econ. Soc. Stud. 41, 396–400 (1973) · doi:10.1111/j.1467-9957.1973.tb00090.x
[16]Gandolfo, G.: Economic Dynamics: Methods and Models. Advanced Textbooks in Economics, vol. 16, 2nd edn. North-Holland, Amsterdam (1980)
[17]Elaydi, S.N.: An Introduction to Difference Equations. Springer, New York (2005)
[18]Okuguchi, K., Irie, K.: The Shur and Samuelson conditions for a cubic equation. Manch. Sch. Econ. Soc. Stud. 58, 414–418 (1990) · doi:10.1111/j.1467-9957.1990.tb00431.x