zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The importance of immune responses in a model of hepatitis B virus. (English) Zbl 1242.92042
Summary: The dynamical behavior of a hepatitis B virus model with cytotoxix T-lymphociye (CTL) immune responses is studied. Analyzing the model, we show that the virus-free equilibrium is globally asymptotically stable if the basic reproductive ratio of virus is less than one and the endemic equilibrium is locally asymptotically stable if the basic reproductive ratio is greater than one. When the basic reproductive ratio is greater than one, the system is uniformly persistent, which means the virus is endemic. Mathematical analysis and numerical simulations show that the CTL immune response play a significant and decisive role in the eradication of the disease. The study and information derived from this model may have an important impact on treatment protocols of the hepatitis B virus in the future.
92C60Medical epidemiology
34C60Qualitative investigation and simulation of models (ODE)
34D20Stability of ODE
65C20Models (numerical methods)
[1]World Health Organization: Hepatitis B. WHO/CDS/CSR/LYO/2002.2: Hepatitis B. This document has been downloaded from the WHO/CSR Web site. http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/ (2002)
[2]Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 93, 4398–4402 (1996) · doi:10.1073/pnas.93.9.4398
[3]Tsiang, M., Rooney, J.E., Toole, J.J., Gibbset, C.S.: Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 29, 1863–1869 (1999) · doi:10.1002/hep.510290626
[4]Neumann, A.U., Lam, N.P.: Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-Alpha therapy. Science 282, 103–107 (1998) · doi:10.1126/science.282.5386.103
[5]Min, L., Su, Y., Kuang, Y.: Mathematical analysis of a basic model of virus infection with application. Rocky Mt. J. Math. 38, 1573–1585 (2008) · Zbl 1194.34107 · doi:10.1216/RMJ-2008-38-5-1573
[6]Long, C., Qi, H., Huang, S.H.: Mathematical modeling of cytotoxic lymphocyte-mediated immune responses to hepatitis B virus infection. J. Biomed. Biotechnol. 38, 1573–1585 (2008)
[7]Qesmi, R., Wu, J., Wu, J., Heffernan, J.M.: Influence of backward bifurcation in a model of hepatitis B and C viruses. Math. Biosci. 224, 118–125 (2010) · Zbl 1188.92017 · doi:10.1016/j.mbs.2010.01.002
[8]Wang, K., Wang, W.: Propagation of HBV with spatial dependence. Math. Biosci. 210, 78–95 (2007) · Zbl 1129.92052 · doi:10.1016/j.mbs.2007.05.004
[9]Wang, K., Wang, W., Song, S.: Dynamics of an HBV model with diffusion and delay. J. Theor. Biol. 253, 36–44 (2008) · doi:10.1016/j.jtbi.2007.11.007
[10]Zeuzem, S., Schmidt, J.M., Lee, J.H., et al.: Effect of inferferomalt on the dynamics of hepatitis C virus turnover in vivo. J. Hepatol. 23, 366–371 (1996)
[11]Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996) · doi:10.1126/science.272.5258.74
[12]Bartholdy, C., Christensen, J.P., Wodarz, D., Thomsen, A.R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus. J. Virol. 74, 10304–10311 (2000) · doi:10.1128/JVI.74.22.10304-10311.2000
[13]Wodarz, D., Christensen, J.P., Thomsen, A.R.: The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002) · doi:10.1016/S1471-4906(02)02189-0
[14]Wang, K., Wang, W., Liu, X.: Global stability in a viral infection model with lytic and nonlytic immune responses. Comput. Math. Appl. 51, 1593–1610 (2006) · Zbl 1141.34034 · doi:10.1016/j.camwa.2005.07.020
[15]Wang, Z., Liu, X.: A chronic viral infection model with immune impairment. J. Theor. Biol. 249, 532–542 (2007) · doi:10.1016/j.jtbi.2007.08.017
[16]Mann, J., Roberts, M.: Modelling the epidemiology of hepatitis B in New Zealand. J. Theor. Biol. 269, 266–272 (2011) · doi:10.1016/j.jtbi.2010.10.028
[17]Bocharov, G., Ludewig, B., Bertoletti, A., Klenerman, P., Junt, T., Krebs, P., Luzyanina, T., Fraser, C., Anderson, R.M.: Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocytes responses. J. Virol. 78(5), 2247–2254 (2004) · doi:10.1128/JVI.78.5.2247-2254.2004
[18]Chisari, F.V.: Cytotoxic T cells and viral hepatitis. J. Clin. Invest. 99, 1472–1477 (1997) · doi:10.1172/JCI119308
[19]Guidotti, L.G., Chisari, F.V.: To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 8, 478–483 (1996) · doi:10.1016/S0952-7915(96)80034-3
[20]Liu, W.-m.: Nonlinear oscillations in models of immune responses to persistent viruses. Theor. Popul. Biol. 52, 224–230 (1997) · Zbl 0890.92015 · doi:10.1006/tpbi.1997.1334
[21]Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986) · doi:10.1090/S0002-9939-1986-0822433-4
[22]Freedman, H.I., Ruan, S., Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6, 583–600 (1994) · Zbl 0811.34033 · doi:10.1007/BF02218848
[23]Wikipedia. Elasticity coefficient. http://en.wikipedia.org/wiki/Elasticity_Coefficient (2010)
[24]Heinrich, R., Rapoport, T.A.: A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95 (1974) · doi:10.1111/j.1432-1033.1974.tb03318.x
[25]Woods, J.H., Sauro, H.M.: Elasticities in metabolic control analysis: algebraic derivation of simplified expressions. Comput. Appl. Biosci. 13, 123–130 (1997)
[26]McMahon, B.J., Alward, W.L., Hall, D.B., Heyward, W.L., Bender, T.R., Francis, D.P., Maynard, J.E.: Acute hepatitis B virus infection: relation of age to clinical expression of disease and subsequent development of the carrier state. J. Infect. Dis. 151, 599–603 (1985) · doi:10.1093/infdis/151.4.599
[27]Zhao, S., Xu, Z., Lu, Y.: A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int. J. Epidemiol. 29, 744–752 (2000) · doi:10.1093/ije/29.4.744
[28]Medley, G.F., Lindop, N.A., Edmunds, W.J., Nokes, D.J.: Hepatitis-B virus endemicity: heterogeneity, catastrophic dynamics and control. Nat. Med. 7(5), 619–624 (2001) · doi:10.1038/87953
[29]Shepard, C.W., Simard, E.P., Finelli, L., Fiore, A.E., Bell, B.P.: Hepatitis B virus infection: epidemiology and vaccination. Epidemiol. Rev. 28, 112–125 (2006) · doi:10.1093/epirev/mxj009
[30]Nowak, M.A., May, R.M.: Viral Dynamics. Oxford University Press, Oxford (2000)
[31]Pereson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2, 28–36 (2002) · doi:10.1038/nri700
[32]Tian, X., Xu, R.: Asymptotic properties of a hepatitis B virus infection model with time delay. Discrete Dyn. Nat. Soc. 182340, 21 (2010). doi: 1155/2010/182340
[33]Shi, X., Zhou, X., Song, X.: Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear Anal. 11, 1795–1809 (2010) · Zbl 1204.34110 · doi:10.1016/j.nonrwa.2009.04.005
[34]Wang, K., Fan, A., Torres, A.: Global properties of an improved hepatitis B virus model. Nonlinear Anal. 11, 3131–3138 (2010) · Zbl 1197.34081 · doi:10.1016/j.nonrwa.2009.11.008
[35]Wang, X., Tao, Y., Song, X.: A delayed HIV-1 infection model with Beddington–DeAngelis functional response. Nonlinear Dyn. 62, 67–72 (2010) · Zbl 1209.34102 · doi:10.1007/s11071-010-9699-1