zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix. (English) Zbl 1242.93009
Summary: In this paper, we investigate the cluster synchronization problem for networks with nonlinearly coupled non-identical dynamical systems and asymmetrical coupling matrix by using pinning control. We derive sufficient conditions for cluster synchronization for any initial values through a feedback scheme and propose an adaptive feedback algorithm that adjusts the coupling strength. Some numerical examples are then given to illustrate the theoretical results.
MSC:
93A15Large scale systems
93C10Nonlinear control systems
93B52Feedback control
References:
[1]Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Sci. Am. 269(6), 102–109 (1993) · doi:10.1038/scientificamerican1293-102
[2]Gray, C.M.: Synchronous oscillations in neural systems. J. Comput. Neurosci. 1, 11–38 (1994) · doi:10.1007/BF00962716
[3]Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825), 277–284 (2001) · doi:10.1038/35065745
[4]Vieira, M.D.: Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett. 82(1), 201–204 (1999) · doi:10.1103/PhysRevLett.82.201
[5]Kunbert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989) · doi:10.1038/337244a0
[6]Wang, S.H., Kuang, J.Y., Li, J.H., Luo, Y.L., Lu, H.P., Hu, G.: Chaos-based secure communications in a large community. Phys. Rev. E 66, 065202(R) (2002)
[7]Yu, D.C., Righero, M., Kocarev, L.: Estimating topology of networks. Phys. Rev. Lett. 97, 188701 (2006)
[8]Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[9]Zheng, Z.G., Hu, G.: Generalized synchronization versus phase synchronization. Phys. Rev. E 62, 7882–7885 (2000) · doi:10.1103/PhysRevE.62.7882
[10]Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997) · doi:10.1103/PhysRevLett.78.4193
[11]Belykh, V.N., Belykh, I.V., Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216 (2001) · doi:10.1146/annurev.physiol.63.1.1
[12]Rosenblum, M.G., Pikovsky, A., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996) · doi:10.1103/PhysRevLett.76.1804
[13]Vreeswijk, C.: Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E 54, 5522–5537 (1996) · doi:10.1103/PhysRevE.54.5522
[14]Kaneko, K.: Relevance of dynamic clustering to biological networks. Physica D 75, 55–73 (1994) · Zbl 0859.92001 · doi:10.1016/0167-2789(94)90274-7
[15]Yoshioka, M.: Cluster synchronization in an ensemble of neurons interacting through chemical synapses. Phys. Rev. E 71, 061914 (2005)
[16]Wu, W., Zhou, W.J., Chen, T.P.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I, Regul. Pap. 56(4), 829–839 (2009) · doi:10.1109/TCSI.2008.2003373
[17]Ma, Z.J., Liu, Z.R., Zhang, G.: A new method to realize cluster synchronization in connected chaotic networks. Chaos 16, 023103 (2006)
[18]Lu, W.L., Liu, B., Chen, T.P.: Cluster synchronization in networks of coupled noidentical dynamical system. Chaos 20, 013120 (2010)
[19]Lu, W.L., Liu, B., Chen, T.P.: Cluster synchronization in networks of distinct groups of maps. Eur. Phys. J. B 77(2), 257–264 (2010) · doi:10.1140/epjb/e2010-00202-7
[20]Wang, K.H., Fu, X.C., Li, K.Z.: Cluster synchronization in community networks with nonidentical nodes. Chaos 19, 023106 (2009)
[21]Liu, X., Chen, T.: Synchronization of identical neural networks and other systems with an adaptive coupling strength. Int. J. Circuit Theory Appl. 38, 631–648 (2010)
[22]Chen, T.P., Liu, X.W., Lu, W.L.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(6), 1317–1326 (2007) · doi:10.1109/TCSI.2007.895383
[23]Guo, W.L., Austin, F., Chen, S.H.: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling. Commun. Nonlinear Sci. Numer. Simul. 15, 1631–1639 (2010) · Zbl 1221.34213 · doi:10.1016/j.cnsns.2009.06.016
[24]Liu, X.W., Chen, T.P.: Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix. Physica A 387, 4429–4439 (2007) · doi:10.1016/j.physa.2008.03.005
[25]Li, K.Z., Small, M., Fu, X.C.: Generation of clusters in complex dynamical networks via pinning control. J. Phys. A, Math. Theor. 41, 505101 (2008)
[26]Li, D.M., Lu, J.A., Wu, X.Q., Chen, G.R.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323, 844–853 (2006) · Zbl 1104.37024 · doi:10.1016/j.jmaa.2005.11.008