zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. (English) Zbl 1242.93052
Summary: In this paper, the projective synchronization of neural networks with mixed time-varying delays and parameter mismatch is discussed. Due to parameter mismatch and projective factor, complete projective synchronization cannot be achieved. Therefore, a new weak projective synchronization scheme is proposed to ensure that coupled neural networks are in a state of synchronization with an error level. Several criteria are derived and the error level is estimated by applying a generalized Halanay inequality and matrix measure. Finally, a numerical example is given to verify the efficiency of theoretical results.
MSC:
93C15Control systems governed by ODE
93C10Nonlinear control systems
92B20General theory of neural networks (mathematical biology)
References:
[1]Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. In: Academic, Physics, Cambridge Nonlinear Science Series. Cambridge University Press, Cambridge (2001)
[2]Pecora, L.M., Carroll, T.L.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991) · doi:10.1109/31.75404
[3]Lu, J., Cao, J., Ho, D.W.C.: Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. 55(5), 1347–1356 (2008)
[4]He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55(1), 55–65 (2009) · Zbl 1169.92300 · doi:10.1007/s11071-008-9344-4
[5]He, W., Cao, J.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters. Phys. Lett. A 372(4), 408–416 (2008) · Zbl 1217.92011 · doi:10.1016/j.physleta.2007.07.050
[6]Kocarev, L., Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996) · doi:10.1103/PhysRevLett.76.1816
[7]He, W., Cao, J.: Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. Chaos 19, 013118 (2009)
[8]Li, C., Liao, X., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194(3–4), 187–202 (2004) · Zbl 1059.93118 · doi:10.1016/j.physd.2004.02.005
[9]Sun, Y., Cao, J.: Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation. Phys. Lett. A 364(3–4), 277–285 (2007) · Zbl 1203.93110 · doi:10.1016/j.physleta.2006.12.019
[10]Corron, N.J., Blakely, J.N., Pethel, S.D.: Lag and anticipating synchronization without time-delay coupling. Chaos 15, 023110 (2005)
[11]Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193–4196 (1997) · doi:10.1103/PhysRevLett.78.4193
[12]Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999) · doi:10.1103/PhysRevLett.82.3042
[13]Ghosh, D.: Generalized projective synchronization in time-delayed systems: nonlinear observer approach. Chaos 19, 013102 (2009)
[14]Yan, J., Li, C.: Generalized projective synchronization of a unified chaotic system. Chaos Solitons Fractals 26(4), 1119–1124 (2005) · Zbl 1073.65147 · doi:10.1016/j.chaos.2005.02.034
[15]Li, G.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solitons Fractals 30(1), 77–82 (2006) · Zbl 1144.37372 · doi:10.1016/j.chaos.2005.08.130
[16]Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal., Real World Appl. 11(2), 705–712 (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[17]Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19(5), 667–675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[18]Song, Q., Cao, J., Zhao, Z.: Periodic solutions and its exponential stability of reaction-diffusion recurrent neural networks with continuously distributed delays. Nonlinear Anal., Real World Appl. 7(1), 65–80 (2006) · Zbl 1094.35128 · doi:10.1016/j.nonrwa.2005.01.004
[19]Liang, J., Cao, J.: Global asymptotic stability of bidirectional associative memory networks with distributed delays. Appl. Math. Comput. 152(2), 415–424 (2004) · Zbl 1046.94020 · doi:10.1016/S0096-3003(03)00567-8
[20]Zhao, H.: Global asymptotic stability of Hopfield neural network involving distributed delays. Neural Netw. 17(1), 47–53 (2004) · Zbl 1082.68100 · doi:10.1016/S0893-6080(03)00077-7
[21]Zhao, H.: Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays. Appl. Math. Comput. 154(3), 683–695 (2004) · Zbl 1057.34099 · doi:10.1016/S0096-3003(03)00743-4
[22]Ruan, S., Filfil, R.S.: Dynamics of a two-neuron system with discrete and distributed delays. Physica D 191(3–4), 323–342 (2004) · Zbl 1049.92004 · doi:10.1016/j.physd.2003.12.004
[23]Wang, Z., Liu, Y., Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345(4–6), 299–308 (2005) · doi:10.1016/j.physleta.2005.07.025
[24]Wang, Z., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354(4), 288–297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[25]Johnson, G.A., Mar, D.J., Carroll, T.L., Pecora, L.M.: Synchronization and imposed bifurcations in the presence of large parameter mismatch. Phys. Rev. Lett. 80(18), 3956–3959 (1998) · doi:10.1103/PhysRevLett.80.3956
[26]Li, X., Pan, W., Luo, B., Ma, D.: Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization. IEEE J. Quantum Electron. 42(9), 953–960 (2006) · doi:10.1109/JQE.2006.880379
[27]Chen, Y., Cao, L., Sun, M.: Robust modified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10(1), 17–23 (2010)
[28]Shen, L., Liu, W., Ma, J.: Robust function projective synchronization of a class of uncertain chaotic systems. Chaos Solitons Fractals 42(2), 1292–1296 (2009) · Zbl 1198.93019 · doi:10.1016/j.chaos.2009.03.073
[29]Vidyasagar, M.: Nonlinear Systems Analysis, 2nd edn. Prentice Hall, Upper Saddle River (1992)
[30]Hom, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge UP, New York (1991)
[31]Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347(1), 169–178 (2008) · Zbl 1161.34047 · doi:10.1016/j.jmaa.2008.05.007
[32]Zhang, W., Huang, J., Wei, P.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control. Appl. Math. Model. 35(2), 612–620 (2011) · Zbl 1205.93125 · doi:10.1016/j.apm.2010.07.009
[33]Wu, X., Lu, H.: Generalized projective synchronization between two different general complex dynamical networks with delayed coupling. Phys. Lett. A 374(38), 3932–3941 (2010) · Zbl 1237.05196 · doi:10.1016/j.physleta.2010.07.059
[34]Wang, K., Teng, Z., Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay. Physica A 387(2–3), 631–642 (2008) · doi:10.1016/j.physa.2007.09.016
[35]Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, vol. 3, pp. 2805–2810 (2000)