zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching. (English) Zbl 1242.93126

Summary: This paper is a contribution to the analysis of the pth moment exponential synchronization problem for a class of stochastic delayed Cohen-Grossberg neural networks with Markovian switching. The jumping parameters are determined by a continuous-time, discrete-state Markov chain, and the delays are time-varying delays.

By using the Lyapunov-Krasovskii functional, stochastic analysis theory, a generalized Halanay-type inequality as well as output coupling with delay feedback control technique, some novel sufficient conditions are derived to achieve complete pth moment exponential synchronization of the addressed neural networks. In particular, the traditional assumptions on the differentiability of the time varying delay and the boundedness of its derivative are removed in this paper. The results obtained in this paper generalize and improve many known results. Moreover, a numerical example and its simulation are also provided to demonstrate the effectiveness and applicability of the theoretical results.

MSC:
93E03General theory of stochastic systems
92B20General theory of neural networks (mathematical biology)
60J75Jump processes
References:
[1]Balasubramaniam, P., Rakkiyappan, R.: Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen–Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst 3(3), 207–214 (2009) · Zbl 1184.93093 · doi:10.1016/j.nahs.2009.01.002
[2]Carroll, T.L., Pecora, L.M.: Synchronization chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991) · doi:10.1109/31.75404
[3]Cao, J., Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural Netw. 17, 379–390 (2004) · Zbl 1074.68049 · doi:10.1016/j.neunet.2003.08.007
[4]Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39(1), 288–294 (2009) · Zbl 1197.93135 · doi:10.1016/j.chaos.2007.01.100
[5]Huang, C., Cao, J.: On pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 73(4–6), 986–990 (2010) · doi:10.1016/j.neucom.2009.08.019
[6]Liu, Z., Lü, S., Zhong, S., Ye, M.: pth moment exponential synchronization analysis for a class of stochastic neural networks with mixed delays. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1899–1909 (2010) · Zbl 1222.65012 · doi:10.1016/j.cnsns.2009.07.018
[7]Li, X., Cao, J.: Adaptive synchronization for delayed neural networks with stochastic perturbation. J. Franklin Inst. 345(7), 779–791 (2008) · Zbl 1169.93350 · doi:10.1016/j.jfranklin.2008.04.012
[8]Li, X., Ding, C., Zhu, Q.: Synchronization of stochastic perturbed chaotic neural networks with mixed delays. J. Franklin Inst. 347(7), 1266–1280 (2010) · Zbl 1202.93057 · doi:10.1016/j.jfranklin.2010.06.001
[9]Li, X., Fu, X.: Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations. Commun. Nonlinear Sci. Numer. Simul. 16(2), 885–894 (2011) · Zbl 1221.93225 · doi:10.1016/j.cnsns.2010.05.025
[10]Li, T., Fei, S., Zhu, Q., Cong, S.: Exponential synchronization of chaotic neural networks with mixed delays. Neurocomputing 71(13–15), 3005–3019 (2008) · doi:10.1016/j.neucom.2007.12.029
[11]Li, T., Song, A., Fei, S., Guo, Y.: Synchronization control of chaotic neural networks with time-varying and distributed delays. Nonlinear Anal. 71(5–6), 2372–2384 (2009) · Zbl 1171.34049 · doi:10.1016/j.na.2009.01.079
[12]Liu, M.: Optimal exponential synchronization of general chaotic delayed neural networks: An LMI approach. Neural Netw. 22(7), 949–957 (2009) · doi:10.1016/j.neunet.2009.04.002
[13]Liu, Y., Wang, Z., Liu, X.: On delay-dependent robust exponential stability of stochastic neural networks with mixed time delays and Markovian switching. Nonlinear Dyn. 54(3), 199–212 (2008) · Zbl 1169.92003 · doi:10.1007/s11071-007-9321-3
[14]Mao, X.: Stochastic Differential Equation and Application. Horwood, Chichester (1997)
[15]Mao, X., Yuan, C.: Stochastic Differential Delay Equations with Markovian Switching. Imperial College Press, London (2006)
[16]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[17]Posadas-Castillo, C., Cruz-Hernández, C., López-Gutiérrez, R.M.: Synchronization of chaotic neural networks with delay in irregular networks. Appl. Math. Comput. 205(1), 487–496 (2008) · Zbl 1184.34081 · doi:10.1016/j.amc.2008.08.015
[18]Rakkiyappan, R., Balasubramaniam, P.: Dynamic analysis of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst 3(4), 408–417 (2009) · Zbl 1194.93191 · doi:10.1016/j.nahs.2009.02.008
[19]Sun, Y., Cao, J., Wang, Z.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks. Neurocomputing 70(13–15), 2477–2485 (2007) · doi:10.1016/j.neucom.2006.09.006
[20]Sun, Y., Cao, J.: pth moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinear Anal., Real World Appl. 8(4), 1171–1185 (2007) · Zbl 1196.60125 · doi:10.1016/j.nonrwa.2006.06.009
[21]Song, Q.: Design of controller on synchronization of chaotic neural networks with mixed time-varying delays. Neurocomputing 72(13–15), 3288–3295 (2009) · doi:10.1016/j.neucom.2009.02.011
[22]Xu, L., Xu, D.: Exponential p-stability of impulsive stochastic neural networks with mixed delays. Chaos Solitons Fractals 41(1), 263–272 (2009) · Zbl 1198.34168 · doi:10.1016/j.chaos.2007.11.031
[23]Tang, Y., Qiu, R., Fang, J., Miao, Q., Xia, M.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays. Phys. Lett. A 372(24), 4425–4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[24]Turova, T.S., Mommaerts, W., van der Meulen, E.C.: Synchronization of firing times in a stochastic neural network model with excitatory connections. Stoch. Process. Appl. 50(1), 173–186 (1994) · Zbl 0805.92003 · doi:10.1016/0304-4149(94)90155-4
[25]Wang, X., Guo, Q., Xu, D.: Exponential p-stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays. Math. Comput. Simul. 79(5), 1698–1710 (2009) · Zbl 1165.34043 · doi:10.1016/j.matcom.2008.08.008
[26]Wang, K., Teng, Z., Jiang, H.: Adaptive synchronization of neural networks with time-varying delay and distributed delay. Physica A 387(2–3), 631–642 (2008) · doi:10.1016/j.physa.2007.09.016
[27]Wang, L., Zhang, Z., Wang, Y.: Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 372(18), 3201–3209 (2008) · Zbl 1220.35090 · doi:10.1016/j.physleta.2007.07.090
[28]Wang, Z., Liu, Y., Yu, L., Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 356(4–5), 346–352 (2006) · Zbl 1160.37439 · doi:10.1016/j.physleta.2006.03.078
[29]Yang, Y., Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects. Physica A 386(1), 492–502 (2007) · doi:10.1016/j.physa.2007.07.049
[30]Yu, W., Cao, J.: Synchronization control of stochastic delayed neural networks. Physica A 373(1), 252–260 (2007) · doi:10.1016/j.physa.2006.04.105
[31]Zhang, H., Wang, Y.: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 19(2), 366–370 (2008) · doi:10.1109/TNN.2007.910738
[32]Zhou, J., Chen, T., Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification. Chaos Solitons Fractals 27(4), 905–913 (2006) · Zbl 1091.93032 · doi:10.1016/j.chaos.2005.04.022
[33]Zhu, Q., Cao, J.: Stochastic stability of neural networks with both Markovian jump parameters and continuously distributed delays. Discrete Dyn. Nat. Soc. 2009, 490515 (2009) 20 pages · Zbl 1185.93147 · doi:10.1155/2009/490515
[34]Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Grossberg neural networks with mixed time delays. Nonlinear Dyn. 61(3), 517–534 (2010) · Zbl 1204.93064 · doi:10.1007/s11071-010-9668-8
[35]Zhu, Q., Cao, J.: Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 21(8), 1314–1325 (2010) · doi:10.1109/TNN.2010.2054108
[36]Zhu, Q., Cao, J.: Stability analysis for stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays. Neurocomputing 73(13–15), 2671–2680 (2010) · doi:10.1016/j.neucom.2010.05.002
[37]Zhu, Q., Cao, J.: Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2139–2159 (2011) · Zbl 1221.93247 · doi:10.1016/j.cnsns.2010.08.037
[38]Zhu, Q., Cao, J.: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(2), 341–353 (2011)
[39]Zhu, Q., Huang, C., Yang, X.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011) · Zbl 1216.34081 · doi:10.1016/j.nahs.2010.08.005
[40]Zhu, Q., Yang, X., Wang, H.: Stochastically asymptotic stability of delayed recurrent neural networks with both Markovian jump parameters and nonlinear disturbances. J. Franklin Inst. 347(2), 1489–1510 (2010) · Zbl 1202.93169 · doi:10.1016/j.jfranklin.2010.07.002