zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean-square exponential synchronization of Markovian switching stochastic complex networks with time-varying delays by pinning control. (English) Zbl 1242.93149
Summary: This paper investigates the mean-square exponential synchronization of stochastic complex networks with Markovian switching and time-varying delays by using the pinning control method. The switching parameters are modeled by a continuous-time, finite-state Markov chain, and the complex network is subject to noise perturbations, Markovian switching, and internal and outer time-varying delays. Sufficient conditions for mean-square exponential synchronization are obtained by using the Lyapunov-Krasovskii functional, Itö’s formula, and the linear matrix inequality (LMI), and numerical examples are given to demonstrate the validity of the theoretical results.
MSC:
93E20Optimal stochastic control (systems)