zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations. (English) Zbl 1243.34006

This paper is concerned with the existence and uniqueness of square-mean pseudo almost automorphic (mild) solutions for a class of fractional stochastic differential equations in a Hilbert space. The authors have used stochastic analysis and fixed point theory to get their results. This paper is well written and it is nice to read. From an applied perspective it is of great significance to introduce stochastic effects in the investigation of fractional differential equations and develop a study of type of periodicity and ergodicity for these equations. Such subject is one of most interesting topics in the theory of evolution equations both due to its theoretical interest as well as due to their concrete applications. We observe that the existence of almost automorphic, pseudo-almost periodic and pseudo-almost automorphic solutions to fractional differential equations has been considered only in a few publications. Some complementary references to this paper are the following:

R. P. Agarwal, B. de Andrade and C. Cuevas, “On type of periodicity and ergodicity to a class of fractional order differential equations”, Adv. Difference Equ. 2010, Article ID 179750, 25 p. (2010; Zbl 1194.34007).

R. P. Agarwal, B. de Andrade and C. Cuevas, “Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations”, Nonlinear Anal., Real World Appl. 11, No. 5, 3532–3554 (2010; Zbl 1248.34004).

C. Cuevas, G. N’Guérékata and A. Sepulveda,“Pseudo almost automorphic solutions to fractional differential and integro-differential equations”, Commun. Appl. Anal. 16, No. 1, 131–152 (2012).

C. Cuevas, H. Soto and A. Sepulveda, “Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations”, Appl. Math. Comput. 218, No. 5, 1735–1745 (2011; Zbl 1246.45012).

MSC:
34A08Fractional differential equations
34F05ODE with randomness
34G20Nonlinear ODE in abstract spaces
43A60Almost periodic functions on groups, etc.; almost automorphic functions
References:
[1]Bochner, S.: A new approach to almost automorphicity, Proc. natl. Acad. sci. USA 48, 2039-2043 (1962) · Zbl 0112.31401 · doi:10.1073/pnas.48.12.2039
[2]Bezandry, P. H.; Diagana, T.: Existence of almost periodic solutions to some stochastic differential equations, Appl. anal. 86, 819-827 (2007) · Zbl 1130.34033 · doi:10.1080/00036810701397788
[3]Diagana, T.; Hernndez, E.; Rabello, M.: Pseudo almost periodic solutions to some non-autonomous neutral functional differential equations with unbounded delay, Math. comput. Modelling 45, 1241-1252 (2007) · Zbl 1133.34042 · doi:10.1016/j.mcm.2006.10.006
[4]Diagana, T.: Almost periodic solutions to some second-order nonautonomous differential equations, Proc. amer. Math. soc. 140, 279-289 (2012)
[5]Goldstein, J. A.; N’guérékata, G. M.: Almost automorphic solutions of semilinear evolution equations, Proc. amer. Math. soc. 133, 2401-2408 (2005) · Zbl 1073.34073 · doi:10.1090/S0002-9939-05-07790-7
[6]N’guérékata, G. M.: Existence and uniqueness of almost automorphic mild solutions to some semilinear abstract differential equations, Semigroup forum 69, 80-86 (2004) · Zbl 1077.47058 · doi:10.1007/s00233-003-0021-0
[7]N’guérékata, G. M.: Topics in almost automorphy, (2005)
[8]Xiao, T. J.; Liang, J.; Zhang, J.: Pseudo almost automorphic solutions to semilinear differential equations in Banach space, Semigroup forum 76, 518-524 (2008) · Zbl 1154.46023 · doi:10.1007/s00233-007-9011-y
[9]Xiao, T. J.; Zhu, X. X.; Liang, J.: Pseudo almost automorphic mild solutions to nonautonomous differential equations and applications, Nonlinear anal. 70, 4079-4085 (2009) · Zbl 1175.34076 · doi:10.1016/j.na.2008.08.018
[10]Diagana, T.: Existence of pseudo-almost automorphic solutions to some abstract differential equations with pseudo-almost automorphic coefficients, Nonlinear anal. 70, 3781-3790 (2009) · Zbl 1178.43004 · doi:10.1016/j.na.2008.07.034
[11]Liang, J.; N’guérékata, G. M.; Xiao, T. J.; Zhang, J.: Some properties of pseudo-almost automorphic functions and applications to abstract differential equations, Nonlinear anal. 70, 2731-2735 (2009) · Zbl 1162.44002 · doi:10.1016/j.na.2008.03.061
[12]Liu, J. H.; Song, X. Q.: Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations, J. funct. Anal. 258, 196-207 (2010) · Zbl 1194.47047 · doi:10.1016/j.jfa.2009.06.007
[13]Zhao, Z. H.; Chang, Y. K.; Nieto, J. J.: Almost automorphic and pseudo almost auto-morphic mild solutions to an abstract differential equation in Banach spaces, Nonlinear anal. TMA 72, 1886-1894 (2010) · Zbl 1189.34116 · doi:10.1016/j.na.2009.09.028
[14]øksendal, B. K.: Stochastic differential equations, (2005)
[15]Bezandry, P. H.; Diagana, T.: Square-mean almost periodic solutions nonautonomous stochastic differential equations, Electron J. Differential equations 117, 1-10 (2007) · Zbl 1138.60323 · doi:emis:journals/EJDE/Volumes/2007/117/abstr.html
[16]Chang, Y. -K.; Zhao, Z. -H.; N’guérékata, G. M.: Square-mean almost automorphic mild solutions to non-autonomous stochastic differential equations in Hilbert spaces, Comput. math. Appl. 61, 384-391 (2011) · Zbl 1211.60025 · doi:10.1016/j.camwa.2010.11.014
[17]Chang, Y. K.; Zhao, Z. H.; Ngurkata, G. M.; Ma, R.: Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations, Nonlinear anal. RWA 12, 1130-1139 (2011) · Zbl 1209.60034 · doi:10.1016/j.nonrwa.2010.09.007
[18]Chang, Y. -K.; Zhao, Z. -H.; N’guérékata, G. M.: A new composition theorem for square-mean almost automorphic functions and applications to stochastic differential equations, Nonlinear anal. 74, 2210-2219 (2011) · Zbl 1217.60043 · doi:10.1016/j.na.2010.11.025
[19]Fu, M. M.; Liu, Z. X.: Square-mean almost automorphic solutions for some stochastic differential equations, Proc. amer. Math. soc. 138, 3689-3701 (2010) · Zbl 1202.60109 · doi:10.1090/S0002-9939-10-10377-3
[20]Chen, Z.; Lin, W.: Square-mean pseudo almost automorphic process and its application to stochastic evolution equations, J. funct. Anal. 261, 69-89 (2011) · Zbl 1233.60030 · doi:10.1016/j.jfa.2011.03.005
[21]Podlubny, I.: Fractional differential equations, (1999)
[22]Ahmed, H. M.: On some fractional stochastic integrodifferential equations in Hilbert space, Int. J. Math. math. Sci., 568078 (2009) · Zbl 1179.60038 · doi:10.1155/2009/568078
[23]El-Borai, M. M.; Ei-Nadi, K. Ei-Said; Fouad, H. A.: On some fractional stochastic delay differential equations, Comput. math. Appl. 59, 1165-1170 (2010) · Zbl 1189.60117 · doi:10.1016/j.camwa.2009.05.004
[24]El-Borai, M. M.; Ei-Nadi, K. Ei-Said; Mostafa, O. L.; Ahmed, H. M.: Volterra equations with fractional stochastic integrals, Math. probl. Eng. 5, 453-468 (2004) · Zbl 1081.45007 · doi:10.1155/S1024123X04312020
[25]M.M. El-Borai, K. EI-Said EI-Nadi, E.G. El-Akabawy, On some fractional evolution equations 59 (2010) 1352–1355. · Zbl 1189.45009 · doi:10.1016/j.camwa.2009.05.005
[26]Cui, J.; Yan, L.: Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. phys. A: math. Theor. 44, 335201 (2011) · Zbl 1232.34107 · doi:10.1088/1751-8113/44/33/335201
[27]Araya, D.; Lizama, C.: Almost automorphic mild solutions to fractional differential equations, Nonlinear anal. 69, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[28]Cuevas, C.; Lizama, C.: Almost automorphic mild solutions to a class of fractional differential equations, Appl. math. Lett. 21, 1315-1319 (2008) · Zbl 1192.34006 · doi:10.1016/j.aml.2008.02.001
[29]Chen, A.; Chen, F.; Deng, S.: On almost automorphic mild solutions for fractional semilinear initial value problems, Comput. math. Appl. 59, 1318-1325 (2010) · Zbl 1189.34079 · doi:10.1016/j.camwa.2009.07.001
[30]Liang, J.; Zhang, J.; Xiao, T. J.: Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. math. Anal. appl. 340, 1493-1499 (2008) · Zbl 1134.43001 · doi:10.1016/j.jmaa.2007.09.065