zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of periodic solutions for neutral type cellular neural networks with delays. (English) Zbl 1243.34102
Summary: By using the theory of abstract continuation theorem of k contractive operator, we study the existence of periodic solutions for neutral type cellular neural networks with delays.
MSC:
34K13Periodic solutions of functional differential equations
34K40Neutral functional-differential equations
References:
[1]Roska, T.; Chua, L. O.: Cellular neural networks with nonlinear and delay-type templates, Int. J. Circuit theory appl. 20, 469-481 (1992)
[2]Zhou, D.; Cao, J.: Globally exponential stability conditions for cellular neural networks with time-varying delay, Appl. math. Comput. 131, 487-496 (2002) · Zbl 1034.34093 · doi:10.1016/S0096-3003(01)00162-X
[3]Zhou, D.; Cao, J.: Globally exponential stability conditions for cellular neural networks with time-varying delays, Appl. math. Comput. 131, 487-496 (2002) · Zbl 1034.34093 · doi:10.1016/S0096-3003(01)00162-X
[4]Cao, J.: New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. lett. A 307, 136-147 (2003) · Zbl 1006.68107 · doi:10.1016/S0375-9601(02)01720-6
[5]Zhang, Q.; Wei, X.; Xu, J.: On global exponential stability of delayed cellular neural networks with time-varying delays, Appl. math. Comput. 162, 679-686 (2005) · Zbl 1114.34337 · doi:10.1016/j.amc.2004.01.004
[6]Liu, Z.; Liao, L.: Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. math. Anal. appl. 290, 247-262 (2004) · Zbl 1055.34135 · doi:10.1016/j.jmaa.2003.09.052
[7]Jiang, H.; Teng, Z.: A new criterion on the global exponential stability for cellular neural networks with multiple time-varying delays, Phys. lett. A 338, 461-471 (2005) · Zbl 1136.34338 · doi:10.1016/j.physleta.2005.02.043
[8]Li, Y. K.; Zhu, L. F.; Liu, P.: Existence and stability of periodic solutions of delayed cellular neural networks, Nonlinear anal.: real world appl. 7, 225-234 (2006) · Zbl 1086.92002 · doi:10.1016/j.nonrwa.2005.02.004
[9]Cao, J.; Wang, J.: Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE trans. Neural networks 13, 457-463 (2002)
[10]Li, Y.; Xing, W. Y.; Lu, L. H.: Existence and global exponential stability of periodic solution of a class of neural networks with impulses, Chaos, solitons and fractals 27, 437-445 (2006) · Zbl 1084.68103 · doi:10.1016/j.chaos.2005.04.021
[11]Li, Y.; Liu, P.: Existence and stability of positive periodic solution for BAM neural networks with delays, Math. comput. Model. 40, 757-770 (2004) · Zbl 1197.34125 · doi:10.1016/j.mcm.2004.10.007
[12]Zhang, Q.; Wei, X.; Xu, J.: Stability analysis for cellular neural networks with variable delays, Chaos, solitons and fractals 28, 331-336 (2006) · Zbl 1084.34068 · doi:10.1016/j.chaos.2005.05.026
[13]Park, Ju H.: Global exponential stability of cellular neural networks with variable delays, Appl. math. Comput. 183, 1214-1219 (2006) · Zbl 1115.34071 · doi:10.1016/j.amc.2006.06.046
[14]Liu, Z.; Liao, L.: Existence and global exponential stability of periodic solutions of cellular neural networks with time-varying delay, J. math. Anal. appl. 290, 247-262 (2004) · Zbl 1055.34135 · doi:10.1016/j.jmaa.2003.09.052
[15]Gui, Z.; Yang, X. S.: Stability and existence of periodic solutions of periodic cellular neural networks with time-varying delay, Comput. math. Appl. 52, 1657-1670 (2006) · Zbl 1160.34063 · doi:10.1016/j.camwa.2006.08.033
[16]Park, Ju H.; Kwon, O. M.; Lee, S. M.: State estimation for neural networks of neutral-type with interval time-varying delays, Appl. math. Comput. (2008)
[17]Park, Ju H.; Kwon, O. M.; Lee, S. M.: LMI optimization approach on stability for delayed neural networks of neutral-type, Appl. math. Comput. 196, 236-244 (2008) · Zbl 1157.34056 · doi:10.1016/j.amc.2007.05.047
[18]Park, J. H.; Park, C. H.; Kwon, O. M.; Lee, S. M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. math. Comput. 199, 716-722 (2008) · Zbl 1149.34345 · doi:10.1016/j.amc.2007.10.032
[19]Park, J. H.; Kwon, O. M.: Design of state estimator for neural networks, Appl. math. Comput. (2008)
[20]Lee, S. M.; Kwon, O. M.; Park, Ju H.: A novel delay-dependent criterion for delayed neural networks of neutral type, Phys. lett. A 374, 1843-1848 (2010)
[21]Mandal, S.; Majee, N. C.: Existence of periodic solutions for a class of Cohen – Grossberg type neural networks with neutral delays, Neurocomputing 74, 1000-1007 (2011)
[22]Wang, K.; Zhu, Y.: Stability of almost periodic solution for a generalized neutral-type neural networks with delays, Neurocomputing 73, 3300-3307 (2010)
[23]Deimling, K.: Nonlinear functional analysis, (1985) · Zbl 0559.47040
[24]Petryshynand, W.; Yu, Z.: Existence theorem for periodic solutions of higher order nonlinear periodic boundary value problems, Nonlinear anal. 6, No. 9, 943-969 (1982) · Zbl 0525.34015 · doi:10.1016/0362-546X(82)90013-X
[25]Liu, Z.; Mao, Y.: Existence theorem for periodic solutions of higher order nonlinear differential equations, J. math. Anal. appl. 216, 481-490 (1997) · Zbl 0892.34040 · doi:10.1006/jmaa.1997.5669
[26]G., Z.; Ge, W.; Yang, X.: Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. lett. A 364, 267-273 (2007) · Zbl 1203.34109 · doi:10.1016/j.physleta.2006.12.013
[27]Lu, S.; Ge, W.: Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. comput. Appl. math. 166, 371-383 (2004) · Zbl 1061.34053 · doi:10.1016/j.cam.2003.08.033