zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of in-host viral models with humoral immunity and intracellular delays. (English) Zbl 1243.34106
Summary: We investigate the dynamical behavior of in-host viral models with humoral immunity and intracellular delays. For both models, using the method of Lyapunov functional, we establish that the global dynamics are determined by two threshold parameters R 0 and R 1 . If R 0 1, the uninfected equilibrium E 0 is globally asymptotically stable, and the viruses are cleared. If R 1 1<R 0 , the infected equilibrium without B cells response E 1 * is globally asymptotically stable, and the infection becomes chronic but with no persistent B cells response. If R 1 > 1, the infected equilibrium with B cells response E 1 * is globally asymptotically stable, and the infection is chronic with persistent B cells response. Alone with some numerical simulations.
34K20Stability theory of functional-differential equations
92C60Medical epidemiology
34K60Qualitative investigation and simulation of models
[1]Deans, J. A.; Cohen, S.: Immunology of malaria, Ann. rev. Microbiol. 37, 25-49 (1983)
[2]Nowak, M.; Bangham, C.: Population dynamics of immune responses to persistent viruses, Science 272, 52-58 (1996)
[3]Zhu, H.; Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete continuous dyn. Syst. ser. B 12, 511-524 (2009) · Zbl 1169.92033 · doi:10.3934/dcdsb.2009.12.511
[4]Wang, X.; Tao, Y.: Lyapunov function and global properties of virus dynamics with CTL immune response, Int. J. Biomath. 1, No. 4, 443-448 (2008) · Zbl 1156.92322 · doi:10.1142/S1793524508000382
[5]Wang, K.; Wang, W.; Pang, H.; Liu, X.: Complex dynamic behavior in a viral model with delayed immune response, Physica D 226, 197-208 (2007) · Zbl 1117.34081 · doi:10.1016/j.physd.2006.12.001
[6]Kagi, D.; Hengartner, H.: Different roles for cytotoxic T-cells in the control of infections with cytopathic versus noncytopathic viruses, Curr. opin. Immunol. 8, 472-477 (1996)
[7]Schmitz, J. E.; Kuroda, M. J.; Santra, S.; Sasseville, V. G.; Simon, M. A.; Lifton, M. A.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, Science 283, 857-860 (1999)
[8]De Boer, R. J.; Perelson, A. S.: Towards a general function describing T cell proliferation, J. theoret. Biol. 175, 567-576 (1995)
[9]De Boer, R. J.; Perelson, A. S.: Target cell limited and immune control models of HIV infection: a comparison, J. theoret. Biol. 190, 201-214 (1998)
[10]Bonhoeffer, S.; May, R. M.; Shaw, G. M.: Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. math. Anal. appl. 375, 14-27 (2011) · Zbl 1221.34225 · doi:10.1016/j.jmaa.2010.08.025
[11]Gomez-Acevedo, H.; Li, M. Y.; Jacobson, S.: Multi-stability in a model for CTL response to HTLV-I infection and its consequences in HAM/TSP development and prevention, Bull. math. Bio. 72, 681-696 (2010) · Zbl 1189.92049 · doi:10.1007/s11538-009-9465-z
[12]Anderson, R. M.; May, R. M.; Gupta, S.: Non-linear phenomena in host-parasite interactions, Parasitology 99, 59-79 (1989)
[13]Murase, Akiko; Sasaki, Toru; Kajiwara, Tsuyoshi: Stability analysis of pathogen-immune interaction dynamics, J. math. Biol. 51, 247-267 (2005) · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[14]Wodarz, Dominik; Robert, M. May; Martin, A. Nowak: The role of antigen-independent persistence of memory cytotoxic T lymphocytes, Int. immunol. 12, No. 4, 467-477 (2000)
[15]Chiyaka, C.; Garira, W.; Dube, S.: Modelling immune response and drug therapy in human malaria infection, Comput. math. Method. med. 9, No. 2, 143-163 (2008) · Zbl 1140.92012 · doi:10.1080/17486700701865661
[16]Perelson, A. S.: Modelling viral and immune system dynamics, Nature rev. Immunol. 2, 28-36 (2002)
[17]Korobeinikov, A.: Global properties of basic virus dynamics models, Bull. math. Biol. 66, No. 4, 879-883 (2004)
[18]Mccluskey, C. C.: Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear anal. 11, 55-59 (2010) · Zbl 1185.37209 · doi:10.1016/j.nonrwa.2008.10.014
[19]Mccluskey, C. C.: Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. biosci. Eng. 6, 603-610 (2009) · Zbl 1190.34108 · doi:10.3934/mbe.2009.6.603
[20]Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. math. Biol. 30, 615-626 (2006)
[21]Georgescu, P.; Hsieh, Y. H.: Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. math. 67, 337-353 (2006) · Zbl 1109.92025 · doi:10.1137/060654876
[22]Li, Michakel Y.; Shu, Hongying: Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. math. 70, 2434-2448 (2010) · Zbl 1209.92037 · doi:10.1137/090779322
[23]Li, Michael Y.; Shuai, Zhisheng; Wang, Chuncheng: Global stability of multi-group epidemic models with distributed delays, J. math. Anal. appl. 361, 38-47 (2010) · Zbl 1175.92046 · doi:10.1016/j.jmaa.2009.09.017
[24]Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional-differential equations, Appl. math. Sci 99 (1993) · Zbl 0787.34002
[25]Salte, A.; Chan, K.; Scott, M.: Sensitivity analysis, pobability and statistics series [M], (2000)
[26]Perelson, A. S.; Neumann, A. U.; Markowitz, M. Leonard: HIV-1 dynamics invivo: virion clearance rate,infected cell life-span, and viral generation time, Science 271, 1582-1586 (1996)
[27]Herz, V.; Bonhoeffer, S.; Anderson, R.; May, R.; Nowak, M.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. natl. Acad. sci. 93, 7247-7251 (1996)
[28]Nelson, P. W.; Murray, J. D.; Perelson, A. S.: A model of HIV-1 pathogenesis that includes an intracellular delay, Math. biosci. 163, 201-215 (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[29]Culshaw, R. V.; Ruan, S.: A delay-differential equation model of HIV infection of CD4+ T-cells, Math. biosci. 165, 27-39 (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[30]Nelson, P. W.; Perelson, A. S.: Mathematical analysis of delay differential equation models of HIV-1 infection, Math. biosci. 179, 73-94 (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[31]Culshaw, R. V.; Ruan, S.; Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. math. Biol. 46, 425-444 (2003) · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[32]Dixit, Narendra M.; Perelson, Alan S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay, J. theor. Biol. 226, 95-109 (2004)