zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ostrowski type methods for solving systems of nonlinear equations. (English) Zbl 1243.65056
Summary: Four generalized algorithms built up from Ostrowski’s method for solving systems of nonlinear equations are written and analyzed. A development of an inverse first-order divided difference operator for functions of several variables is presented, as well as a direct computation of the local order of convergence for these variants of Ostrowski’s method. Furthermore, a sequence that approximates the order of convergence is generated for the examples and it confirms in a numerical way that the order of the methods is well deduced.
65H10Systems of nonlinear equations (numerical methods)
65Y20Complexity and performance of numerical algorithms
[1]W. Gautschi, Alexander M. Ostrowski, (1893 – 1986): His life, work, and students (2010). lt;http://www.cs.purdue.edu/homes/wxg/AMOengl.pdfgt;.
[2]Ostrowski, A. M.: Solutions of equations and system of equations, (1960) · Zbl 0115.11201
[3]Grau, M.; Dı&acute, J. L.; Az-Barrero: An improvement to Ostrowski root-finding method, Appl. math. Comput. 173, 450-456 (2006)
[4]Neta, B.: A sixth-order family of methods for nonlinear equations, Int. J. Comput. math. 7, 157-161 (1979) · Zbl 0397.65032 · doi:10.1080/00207167908803166
[5]Neta, B.: A new iterative method for the solution of systems of nonlinear equations, Approx. theor. Appl., 249-263 (1981)
[6]Sharma, J. R.; Guha, R. K.: A family of modified Ostrowski methods with accelerated sixth order convergence, Appl. math. Comput. 190, 111-115 (2007) · Zbl 1126.65046 · doi:10.1016/j.amc.2007.01.009
[7]Chun, C.; Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods, Appl. math. Comput. 193, 389-394 (2007) · Zbl 1193.65055 · doi:10.1016/j.amc.2007.03.074
[8]Kou, J.; Li, Y.; Wang, X.: Some variants of Ostrowski’s method with seventh-order convergence, J. comput. Appl. math. 209, 153-159 (2007) · Zbl 1130.41006 · doi:10.1016/j.cam.2006.10.073
[9]Ding, H.; Zhang, Y.; Wang, S.; Yang, X.: A note on some quadrature based three-step iterative methods for non-linear equations, Appl. math. Comput. 215, 53-57 (2009) · Zbl 1194.65072 · doi:10.1016/j.amc.2009.04.036
[10]Bi, W.; Ren, H.; Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations, J. comput. Appl. math. 225, 105-112 (2009) · Zbl 1161.65039 · doi:10.1016/j.cam.2008.07.004
[11]Kou, J.; Wang, X.; Li, Y.: Some eighth-order root-finding three-step methods, Commun. nonlinear sci. Numer. simulat. 15, 536-544 (2010) · Zbl 1221.65115 · doi:10.1016/j.cnsns.2009.04.013
[12]Kou, J.; Wang, X.: Some improvements of Ostrowski’s method, Appl. math. Lett. 23, 92-96 (2010) · Zbl 1191.65049 · doi:10.1016/j.aml.2009.08.010
[13]Sharma, J. R.; Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence, Numer. algor. 54, 445-458 (2010) · Zbl 1195.65067 · doi:10.1007/s11075-009-9345-5
[14]Liu, L.; Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations, Appl. math. Comput. 215, 3449-3454 (2010) · Zbl 1183.65051 · doi:10.1016/j.amc.2009.10.040
[15]Wang, X.; Liu, L.: Modified Ostrowski’s methods with eighth-order convergence and high efficiency index, Appl. math. Lett. 23, 549-554 (2010) · Zbl 1191.65050 · doi:10.1016/j.aml.2010.01.009
[16]Traub, J. F.: Iterative methods for the solution of equations, (1964) · Zbl 0121.11204
[17]Grau, M.; Dı&acute, J. L.; Az-Barrero: A technique to composite a modified Newton’s method for solving nonlinear equations, A technique to composite a modified Newton’s method for solving nonlinear equations (2011)
[18]Ortega, J. M.; Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables, (1970) · Zbl 0241.65046
[19]Potra, F. -A.; Pták, V.: Nondiscrete induction and iterarive processes, (1984)
[20]Amat, S.; Busquier, S.; Candela, V. F.: A class of quasi-Newton generalized Steffensen’s methods on Banach spaces, J. comput. Appl. math. 149, 397-406 (2002) · Zbl 1016.65035 · doi:10.1016/S0377-0427(02)00484-3
[21]Hernandez, M. A.; Rubio, M. J.; Ezquerro, J. A.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type, J. comput. Appl. math. 115, 245-254 (2000) · Zbl 0944.65146 · doi:10.1016/S0377-0427(99)00116-8
[22]Amat, S.; Busquier, S.; Gutierrez, J. M.: Geometric constructions of iterative functions to solve nonlinear equations, J. comput. Appl. math. 157, 197-205 (2003) · Zbl 1024.65040 · doi:10.1016/S0377-0427(03)00420-5
[23]Amat, S.; Busquier, S.: On a higher order secant method, Appl. math. Comput. 141, 321-329 (2003) · Zbl 1035.65057 · doi:10.1016/S0096-3003(02)00257-6
[24]Grau-Sánchez, M.; Grau, A.; Noguera, M.: Frozen divided difference scheme for solving systems of nonlinear equations, J. comput. Appl. math. 235, 1739-1743 (2011) · Zbl 1204.65051 · doi:10.1016/j.cam.2010.09.019
[25]M. Grau-Sánchez, A. Grau, M. Noguera, On the computational efficiency index and some iterative methods for solving systems of nonlinear equations, J. Comput. Appl. Math. accepted for publication. · Zbl 1231.65090 · doi:10.1016/j.cam.2011.08.008
[26]Grau-Sánchez, M.; Noguera, M.; Gutiérrez, J. M.: On some computational orders of convergence, Appl. math. Lett. 23, 472-478 (2010) · Zbl 1189.65092 · doi:10.1016/j.aml.2009.12.006
[27]Polyanin, A. D.; Manzhirov, A. V.: Handbook of integral equations, (1998)
[28]Ezquerro, J. A.; Grau-Sánchez, M.; Grau, A.; Hernández, M. A.; Noguera, M.; Romero, N.: On iterative methods with accelerated convergence for solving systems of nonlinear equations, J. optim. Theory appl. (2011)