zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. (English) Zbl 1243.65144
Summary: This paper presents a new non-overlapping domain decomposition method for the Helmholtz equation, whose effective convergence is quasi-optimal. These improved properties result from a combination of an appropriate choice of transmission conditions and a suitable approximation of the Dirichlet to Neumann operator. A convergence theorem of the algorithm is established and numerical results validating the new approach are presented in both two and three dimensions.
65N55Multigrid methods; domain decomposition (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
65N12Stability and convergence of numerical methods (BVP of PDE)
[1]Amestoy, P. R.; Duff, I. S.; Koster, J.; L’excellent, J. -Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM journal on matrix analysis and applications 23, No. 1, 15-41 (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[2]Antoine, X.; Barucq, H.; Bendali, A.: Bayliss – turkel-like radiation condition on surfaces of arbitrary shape, Journal of mathematical analysis and applications 229, 184-211 (1999) · Zbl 0923.35179 · doi:10.1006/jmaa.1998.6153
[3]Antoine, X.; Darbas, M.: Alternative integral equations for the iterative solution of acoustic scattering problems, Quarterly journal of mechanics and applied mathematics 58, No. 1, 107-128 (2005) · Zbl 1064.76095 · doi:10.1093/qjmamj/hbh023
[4]Antoine, X.; Darbas, M.: Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation, Mathematical modelling and numerical analysis 41, No. 1, 147-167 (2007) · Zbl 1123.65117 · doi:10.1051/m2an:2007009 · doi:numdam:M2AN_2007__41_1_147_0
[5]X. Antoine, M. Darbas, Integral Equations and Iterative Schemes for Acoustic Scattering Problems, in press.
[6]Antoine, X.; Darbas, M.; Lu, Y. Y.: An improved surface radiation condition for high-frequency acoustics scattering problems, Computer methods in applied mechanics and engineering 195, No. 33-36, 4060-4074 (2006) · Zbl 1120.76058 · doi:10.1016/j.cma.2005.07.010
[7]Antoine, X.; Geuzaine, C.: Phase reduction models for improving the accuracy of the finite element solution of time-harmonic scattering problems I: General approach and low-order models, Journal of computational physics 228, No. 8, 3114-3136 (2009) · Zbl 1161.65082 · doi:10.1016/j.jcp.2009.01.008
[8]Bayliss, A.; Gunzburger, M.; Turkel, E.: Boundary conditions for the numerical solutions for elliptic equations in exterior regions, SIAM journal of applied mathematics 42, 430-451 (1982) · Zbl 0479.65056 · doi:10.1137/0142032
[9]Bayliss, A.; Turkel, E.: Radiation boundary-conditions for wave-like equations, Communications on pure and applied mathematics 33, No. 6, 707-725 (1980) · Zbl 0438.35043 · doi:10.1002/cpa.3160330603
[10]Bendali, A.; Boubendir, Y.: Non-overlapping domain decomposition method for a nodal finite element method, Numerische Mathematik 103, No. 4, 515-537 (2006) · Zbl 1099.65122 · doi:10.1007/s00211-006-0010-9
[11]Bendali, A.; Boubendir, Y.; Fares, M’b.: A FETI-like domain decomposition method for coupling FEM and BEM in large-size problems of acoustic scattering, Computer & structures 85, 526-535 (2007)
[12]Bermudez, A.; Hervella-Nieto, L.; Prieto, A.; Rodriguez, R.: An exact bounded perfectly matched layer for time-harmonic scattering problems, SIAM journal of scientific computing 30, No. 1, 312-338 (2007) · Zbl 1159.65356 · doi:10.1137/060670912
[13]De La Bourdonnaye, A.; Farhat, C.; Macedo, A.; Magoulès, F.; Roux, F. X.: A non overlapping domain decomposition method for the exterior Helmholtz problem, Contemporary mathematics 218, No. 2, 42-66 (1998) · Zbl 0909.65103
[14]Boubendir, Y.: An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem, Journal of computational and applied mathematics 204, No. 2, 282-291 (2007) · Zbl 1117.65151 · doi:10.1016/j.cam.2006.02.044
[15]Boubendir, Y.; Bendali, A.; Fares, M. B.: Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method, International journal for numerical methods in engineering 73, 1624-1650 (2008) · Zbl 1175.78026 · doi:10.1002/nme.2136
[16]Collino, F.; Ghanemi, S.; Joly, P.: Domain decomposition method for harmonic wave propagation: a general presentation, Computer methods in applied mechanics and engineering 184, 171-211 (2000) · Zbl 0965.65134 · doi:10.1016/S0045-7825(99)00228-5
[17]Collino, F.; Monk, P.: The perfectly matched layer in curvilinear coordinates, SIAM journal of scientific computing 19, No. 6, 2061-2090 (1998) · Zbl 0940.78011 · doi:10.1137/S1064827596301406
[18]B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de Propagation d’Ondes en Régime Harmonique. Le Théorème de Borg pour l’Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France, 1991. · Zbl 0849.65085
[19]Després, B.: Domain decomposition method and the Helmholtz problem, Mathematical and numerical aspects of wave propagation phenomena (Strasbourg), 44-52 (1991)
[20]Després, B.: Domain decomposition method and the Helmholtz problem (part II), (1993)
[21]Dular, P.; Geuzaine, C.; Henrotte, F.; Legros, W.: A general environment for the treatment of discrete problems and its application to the finite element method, IEEE transactions on magnetics 34, No. 5, 3395-3398 (1998)
[22]Engquist, B.; Majda, A.: Absorbing boundary conditions for the numerical simulation of waves, Mathematics of computation 23, 629-651 (1977) · Zbl 0367.65051 · doi:10.2307/2005997
[23]Farhat, C.; Macedo, A.; Lesoinne, M.: A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numerische Mathematik 85, No. 2, 282-303 (2000) · Zbl 0965.65133 · doi:10.1007/s002110000147
[24]Farhat, C.; Macedo, A.; Lesoinne, M.; Roux, F. X.; Magoulès, F.; De La Bourdonnaye, A.: Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems, Computer methods in applied mechanics and engineering 184, 213-239 (2000) · Zbl 0979.76046 · doi:10.1016/S0045-7825(99)00229-7
[25]Farhat, C.; Tezaur, R.; Toivanen, J.: A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers, International journal for numerical methods in engineering 78, 1513-1531 (2009) · Zbl 1171.76417 · doi:10.1002/nme.2534
[26]Gander, M. J.; Magoulès, F.; Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM journal of scientific computing 24, No. 1, 38-60 (2002) · Zbl 1021.65061 · doi:10.1137/S1064827501387012
[27]Geuzaine, C.; Remacle, J. -F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International journal for numerical methods in engineering 79, No. 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[28]Guddati, M-N.; Lim, K. -W: Continued fraction absorbing boundary conditions for convex polygonal domains, International journal for numerical methods in engineering 66, 949977 (2006) · Zbl 1110.74850 · doi:10.1002/nme.1574
[29]Ianculescu, C.; Thompson, L. L.: Parallel iterative solution for the Helmholtz equation with exact non-reflecting boundary conditions, Computer methods in applied mechanics and engineering 195, No. 29-32, 3709-3741 (2006) · Zbl 1120.76041 · doi:10.1016/j.cma.2005.02.030
[30]Ihlenburg, F.; Babuska, I.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, International journal for numerical methods in engineering 38, 3745-3774 (1995) · Zbl 0851.73062 · doi:10.1002/nme.1620382203
[31]Ihlenburg, F.: Finite element analysis of acoustic scattering, (1998)
[32]Kerchroud, R.; Antoine, X.; Soulaimani, A.: Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency, International journal for numerical methods in engineering 64, No. 10, 1275-1302 (2005) · Zbl 1113.76051 · doi:10.1002/nme.1390
[33]Kerchroud, R.; Soulaimani, A.; Antoine, X.: Performance study of plane wave finite element methods with a Padé-type artificial boundary condition in acoustic scattering, Advances in engineering software 40, 738-750 (2009) · Zbl 1165.76025 · doi:10.1016/j.advengsoft.2008.12.016
[34]P.-L. Lions. On the Schwarz Alternating Method III: A Variant for Non Overlapping Subdomains, in: T.F. Chan, R. Glowinski, J. Périaux, O. Widlund (Eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20 – 22 (1989), SIAM, Philadelphia, PA, 1990.
[35]Milinazzo, F. A.; Zala, C. A.; Brooke, G. H.: Rational square-root approximations for parabolic equation algorithms, Journal of the acoustical society of America 101, No. 2, 760-766 (1997)
[36]Quarteroni, A.; Valli, A.: Domain decomposition methods for partial differential equations, (1999)
[37]F.X. Roux, F. Magoules, L. Series, Y. Boubendir, Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method, Lecture Notes in Computational Science and Engineering, vol. 40, 2005, pp. 283 – 290. · Zbl 1066.65130
[38]F.-X. Roux, F. Magoulès, S. Salmon, L. Series, Optimization of interface operator based on algebraic approach, in: Domain Decomposition Methods in Science and Engineering, pp. 297 – 304, 2002.
[39]Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996. · Zbl 1031.65047
[40]Senior, T. B. A.; Volakis, J. L.: Approximate boundary conditions in electromagnetics, (1995)
[41]Singer, I.; Turkel, E.: A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, Journal of computational physics 201, No. 2, 439-465 (2004) · Zbl 1061.65109 · doi:10.1016/j.jcp.2004.06.010
[42]Stupfel, B.: A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem, Journal of computational physics 172, No. 2, 451-471 (2001) · Zbl 0992.78014 · doi:10.1006/jcph.2001.6814
[43]Taylor, M. E.: Pseudodifferential operators, (1981)
[44]Toselli, A.; Windlund, O.: Domain decomposition methods algorithms and theory, Springer series in computational mathematics 34 (2004)
[45]Turkel, E.; Yefet, A.: Absorbing PML boundary layers for wave-like equations, Applied numerical mathematics 27, No. 4, 533-557 (1998) · Zbl 0933.35188 · doi:10.1016/S0168-9274(98)00026-9