zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive output feedback control of uncertain nonlinear chaotic systems based on dynamic surface control technique. (English) Zbl 1243.93057
Summary: In this paper, an adaptive output feedback control algorithm based on the Dynamic Surface Control (DSC) is proposed for a class of uncertain chaotic systems. Because the system states are assumed to be unavailable, an observer is designed to estimate those unavailable states. The main advantage of this algorithm can overcome the problem of “explosion of complexity” inherent in the backstepping design. Thus, the proposed control approach is simpler than the traditional backstepping control for the uncertain chaotic systems. The stability analysis shows that the system is stable in the sense that all signals in the closed-loop system are Uniformly Ultimately Bounded (UUB) and the system output can track the reference signal to a bounded compact set. Finally, an example is provided to illustrate the effectiveness of the proposed control system.
MSC:
93C40Adaptive control systems
34H10Chaos control (ODE)
93C15Control systems governed by ODE
Software:
CVX
References:
[1]Chen, G.R., Yu, X.H.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46(6), 767–772 (1999) · Zbl 0951.93034 · doi:10.1109/81.768837
[2]Nijmeijer, H., Mareels, I.M.Y.: An observer looks at synchronization. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(10), 882–890 (1997) · doi:10.1109/81.633877
[3]Solak, E.: Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 51(10), 557–560 (2004) · doi:10.1109/TCSII.2004.834534
[4]Hua, C.C., Guan, X.P.: Synchronization of chaotic systems based on PI observer design. Phys. Lett. A 334(5–6), 382–389 (2005) · Zbl 1123.37306 · doi:10.1016/j.physleta.2004.11.050
[5]Celikovsky, S., Chen, G.R.: Secure synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE Trans. Autom. Control 50(1), 76–82 (2005) · doi:10.1109/TAC.2004.841135
[6]Loría, A., Panteley, E., Zavala-Río, A.: Adaptive observers with persistency of excitation for synchronization of chaotic systems. IEEE Trans. Circuits Syst. I, Regul. Pap. 56(12), 2703–2716 (2009) · doi:10.1109/TCSI.2009.2016636
[7]Yu, S.M., Lü, J.H., Chen, G.R., Yu, X.H.: Design and implementation of grid multiwing butterfly chaotic attractors from a piecewise Lorenz system. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 57(10), 803–807 (2010) · doi:10.1109/TCSII.2010.2067792
[8]Chen, M., Chen, W.H.: Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos Solitons Fractals 41(5), 2716–2724 (2009) · Zbl 1198.93155 · doi:10.1016/j.chaos.2008.10.003
[9]Lu, J.Q., Cao, J.D., Ho, D.W.C.: Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. I, Regul. Pap. 55(5), 1347–1356 (2008) · doi:10.1109/TCSI.2008.916462
[10]Loría, A., Zavala-Río, A.: Adaptive tracking control of chaotic systems with applications to synchronization. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(9), 2019–2029 (2007) · doi:10.1109/TCSI.2007.904682
[11]Hua, C.C., Guan, X.P., Shi, P.: Adaptive feedback control for a class of chaotic systems. Chaos Solitons Fractals 23(3), 757–765 (2005) · Zbl 1061.93503 · doi:10.1016/j.chaos.2004.05.042
[12]Hua, C.C., Guan, X.P., Li, X.L., Shi, P.: Adaptive observer-based control for a class of chaotic systems. Chaos Solitons Fractals 22(1), 103–110 (2004) · Zbl 1089.93010 · doi:10.1016/j.chaos.2003.12.072
[13]Ge, S.S., Wang, C.: Adaptive control of uncertain Chua’s circuits. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(9), 1397–1404 (2000) · Zbl 1046.93506 · doi:10.1109/81.883337
[14]Ge, S.S., Wang, C., Lee, T.H.: Adaptive backstepping control of a class of chaotic systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10(5), 1149–1156 (2000)
[15]Wang, C., Ge, S.S.: Adaptive backstepping control of uncertain Lorenz system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11(4), 1115–1119 (2001) · Zbl 1090.93536 · doi:10.1142/S0218127401002560
[16]Zhou, J., Er, M.J.: Adaptive output control of a class of uncertain chaotic systems. Syst. Control Lett. 56(6), 452–460 (2007) · Zbl 1117.93041 · doi:10.1016/j.sysconle.2006.12.002
[17]Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000) · Zbl 0991.93041 · doi:10.1109/TAC.2000.880994
[18]Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998) · Zbl 0969.93037 · doi:10.1080/002071798221650
[19]Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005) · doi:10.1109/TNN.2004.839354
[20]Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360–2365 (2007) · doi:10.1109/TAC.2007.910715
[21]Yoo, S.J., Park, J.B., Choi, Y.H.: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs. Automatica 45(2), 436–443 (2009) · Zbl 1158.93399 · doi:10.1016/j.automatica.2008.07.019
[22]Krishnamurthy, P., Khorrami, F., Jiang, Z.P.: Global output feedback tracking for nonlinear systems in generalized output-feedback canonical form. IEEE Trans. Autom. Control 47(5), 814–819 (2002) · doi:10.1109/TAC.2002.1000279
[23]Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 40(1), 170–184 (2010) · doi:10.1109/TSMCA.2009.2030164
[24]Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177(18), 3901–3917 (2007) · Zbl 1121.93037 · doi:10.1016/j.ins.2007.03.005
[25]Liu, Y.J., Tong, S.C., Wang, W.: Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst. 160(19), 2727–2754 (2009) · Zbl 1176.93046 · doi:10.1016/j.fss.2008.12.016
[26]Liu, Y.J., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems. Fuzzy Sets Syst. 164(1), 25–44 (2011) · Zbl 1217.93090 · doi:10.1016/j.fss.2010.09.002
[27]Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431–439 (2009) · Zbl 1176.93040 · doi:10.1007/s11071-008-9453-0
[28]Liu, Y.J., Tong, S.C., Wang, W., Li, Y.M.: Observer-based direct adaptive fuzzy control of uncertain nonlinear systems and its applications. Int. J. Control. Autom. Syst. 7(4), 681–690 (2009) · doi:10.1007/s12555-009-0420-4
[29]Wang, X.Y., Wang, X.J., Zhao, J.F., Zhang, Z.F.: Chaotic encryption algorithm based on alternant of stream cipher and block cipher. Nonlinear Dyn. 63(4), 587–597 (2011) · doi:10.1007/s11071-010-9821-4
[30]Wang, X.Y., Sun, P.: Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn., 63(4), 599–609 (2011) · doi:10.1007/s11071-010-9822-3
[31]Wang, X.Y., Yang, L., Liu, R.: A chaotic image encryption algorithm based on perception model. Nonlinear Dyn. 62(3), 615–621 (2010) · Zbl 1209.94015 · doi:10.1007/s11071-010-9749-8
[32]Wang, X.Y., Wang, M.J.: Projective synchronization of nonlinear-coupled spatiotemporal chaotic systems. Nonlinear Dyn. 62(3), 567–571 (2010) · doi:10.1007/s11071-010-9744-0
[33]Wang, R., Liu, Y.J., Tong, S.C.: Decentralized control of uncertain nonlinear stochastic systems based on DSC. Nonlinear Dyn. 64(4), 305–314 (2011) · doi:10.1007/s11071-010-9862-8
[34]Liu, Y.J., Chen, C.L.P., Wen, G.X., Tong, S.C.: Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Trans. Neural Netw. 22(7), 1162–1167 (2011) · doi:10.1109/TNN.2011.2146788
[35]Liu, Y.J., Tong, S.C., Wang, D., Li, T.S., Wang, D., Chen, C.L.P.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011) · doi:10.1109/TNN.2011.2159865