zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. (English) Zbl 1243.93068
Summary: This paper studies the attitude control problem of spacecrafts with flexible appendages. It is well known that the unwanted vibration modes, model uncertainty and space environmental disturbances may cause degradation of the performance of attitude control systems for a flexible spacecraft. In this paper, the vibration from flexible appendages is modeled as a derivative-bounded disturbance to the attitude control system of the rigid hub. A Disturbance-Observer-Based Control (DOBC) is formulated for feedforward compensation of the elastic vibration. The model uncertainty and space environmental disturbances as well as other noises are merged into an “equivalent” disturbance. We design a composite controller with a hierarchical architecture by combining DOBC and PD control, where DOBC is used to reject the vibration effect from the flexible appendages. Numerical simulations are performed to demonstrate that by using the composite hierarchical control law, disturbances can be effectively attenuated and a robust dynamic performance be enhanced.
MSC:
93C73Perturbations in control systems
93D21Adaptive or robust stabilization
93C15Control systems governed by ODE
References:
[1]Miller, A.J., Gray, G.L., Mazzoleni, A.P.: Nonlinear spacecraft dynamics with flexible appendage, damping, and moving internal submasses. J. Guid. Control Dyn. 42(3), 605–615 (2001) · doi:10.2514/2.4752
[2]Nagata, T., Modi, V.J.M., Matsuo, H.: Dynamics and control of flexible multibody systems part I: general formulation with an order N forward dynamics. Acta Astronaut. 49(11), 581–594 (2001) · doi:10.1016/S0094-5765(01)00011-X
[3]Ben-Asher, J., Burns, J.A., CliO, E.M.: Time optimal slewing of flexible spacecraft. J. Guid. Control Dyn. 15, 360–367 (1992) · Zbl 0775.93137 · doi:10.2514/3.20844
[4]Bolonkin, A.A., Khot, N.S.: Optimal bounded control design for vibration suppression. Acta Astronaut. 38(10), 803–813 (1996) · doi:10.1016/S0094-5765(96)00079-3
[5]Song, G., Kotejoshyer, B.: Vibration reduction of flexible structures during slew operations. Int. J. Acoust. Vib. 7(2), 105–109 (2002)
[6]Chen, Y.P., Lo, S.C.: Sliding mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1328–1333 (1993) · doi:10.1109/7.259536
[7]Crassidis, J.L., Markley, F.L.: Sliding mode control using modified Rodrigues parameters. J. Guid. Control Dyn. 19(6), 1381–1383 (1996) · Zbl 0865.93044 · doi:10.2514/3.21798
[8]Gennaro, S.D.: Active vibration suppression in flexible spacecraft attitude tracking. J. Guid. Control Dyn. 21(3), 400–408 (1998) · doi:10.2514/2.4272
[9]Gennaro, S.D.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electron. Syst. 39(3), 747–759 (2003) · doi:10.1109/TAES.2003.1238733
[10]Hu, Q.L., Ma, G.F.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9, 307–317 (2005) · Zbl 1195.74120 · doi:10.1016/j.ast.2005.02.001
[11]Hu, Q.L.: Variable structure maneuvering control with time-varying sliding surface and active vibration damping of flexible spacecraft with input saturation. Acta Astronaut. 64, 1085–1108 (2009) · doi:10.1016/j.actaastro.2009.01.009
[12]Ballois, S.L., Duc, G.: H control of an earth observation satellite. J. Guid. Control Dyn. 19(3), 628–635 (1996) · Zbl 0850.93638 · doi:10.2514/3.21667
[13]Byun, K.W., Wie, B., Geller, D.: Robust H control design for the space station with structured parameter uncertainty. J. Guid. Control Dyn. 14(6), 1115–1122 (1996) · Zbl 0751.93029 · doi:10.2514/3.20765
[14]Charbonnel, C.: H and LMI attitude control design: towards performances and robustness enhancement. Acta Astronaut. 54, 307–314 (2004) · doi:10.1016/S0094-5765(03)00049-3
[15]Guo, L., Chen, W.H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15, 109–125 (2005) · Zbl 1078.93030 · doi:10.1002/rnc.978
[16]Guo, L., Feng, C.B., Chen, W.H.: A survey of disturbance-observer-based control for dynamic nonlinear system. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 13, 79–84 (2006)
[17]Ishikawa, J., Tomizuka, M.: Pivot friction compensation using an accelerometer and a disturbance observer for hard disk. IEEE/ASME Trans. Mechatron. 3, 194–201 (1998) · doi:10.1109/3516.712115
[18]Chen, W.H.: Nonlinear disturbance observer-enhanced dynamic inversion control of missiles. J. Guid. Control Dyn. 26(1), 161–166 (2003) · doi:10.2514/2.5027
[19]Wei, X., Guo, L.: Composite disturbance-observer-based control and H control for complex continuous models. Int. J. Robust Nonlinear Control 20(1), 106–118 (2010) · Zbl 1191.93014 · doi:10.1002/rnc.1425
[20]Isidori, A., Byrnes, C.I.: Output regulation of nonlinear systems. IEEE Trans. Autom. Control 35, 131–140 (1990) · Zbl 0704.93034 · doi:10.1109/9.45168
[21]Marino, R., Tomei, P.: Adaptive tracking and disturbance rejection for uncertain nonlinear systems. IEEE Trans. Autom. Control 50, 90–95 (2005) · doi:10.1109/TAC.2004.841132
[22]Wu, H.: Continuous adaptive robust controllers guaranteeing uniform ultimate boundedness for uncertain nonlinear systems. Int. J. Control 72, 115–122 (1999) · Zbl 0945.93019 · doi:10.1080/002071799221280