zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterizations of composition followed by differentiation between Bloch-type spaces. (English) Zbl 1244.30082
Summary: Some results on the boundedness and compactness of composition followed by differentiation between Bloch-type spaces are refined in this paper.
MSC:
30H30Bloch spaces
47B33Composition operators
References:
[1]Cowen, C. C.; Maccluer, B. D.: Composition operators on spaces of analytic functions, (1995) · Zbl 0873.47017
[2]Hibschweiler, R. A.; Portnoy, N.: Composition followed by differentiation between Bergman and Hardy spaces, Rocky mountain J. Math. 35, No. 3, 843-855 (2005) · Zbl 1079.47031 · doi:10.1216/rmjm/1181069709
[3]Li, S.; Stević, S.: Composition followed by differentiation between Bloch type spaces, J. comput. Anal. appl. 9, No. 2, 195-206 (2007) · Zbl 1132.47026
[4]Li, S.; Stević, S.: Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces, Sb. math 199, No. 12, 1847-1857 (2008) · Zbl 1169.47025 · doi:10.1070/SM2008v199n12ABEH003983
[5]Li, S.; Stević, S.: Generalized composition operators on Zygmund spaces and Bloch type spaces, J. math. Anal. appl. 338, 1282-1295 (2008) · Zbl 1135.47021 · doi:10.1016/j.jmaa.2007.06.013
[6]Li, S.; Stević, S.: Products of Volterra type operator and composition operator from H and Bloch spaces to the Zygmund space, J. math. Anal. appl. 345, 40-52 (2008) · Zbl 1145.47022 · doi:10.1016/j.jmaa.2008.03.063
[7]Li, S.; Stević, S.: Composition followed by differentiation between H and α-Bloch spaces, Houston J. Math. 35, No. 1, 327-340 (2009) · Zbl 1166.47034
[8]Li, S.; Stević, S.: Products of integral-type operators and composition operators between Bloch-type spaces, J. math. Anal. appl. 349, 596-610 (2009) · Zbl 1155.47036 · doi:10.1016/j.jmaa.2008.09.014
[9]Li, S.; Stević, S.: Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and bers spaces, Appl. math. Comput. 217, 3144-3154 (2010) · Zbl 1204.30046 · doi:10.1016/j.amc.2010.08.047
[10]Maccluer, B.; Stroethoff, K.; Zhao, R.: Generalized Schwarz – Pick estimates, Proc. amer. Math. soc. 131, No. 2, 593-599 (2003) · Zbl 1012.30015 · doi:10.1090/S0002-9939-02-06588-7
[11]Ohno, S.: Products of composition and differentiation between Hardy spaces, Bull. austral. Math. soc. 73, No. 2, 235-243 (2006) · Zbl 1102.47015 · doi:10.1017/S0004972700038818
[12]Ohno, S.: Products of differentiation and composition on Bloch spaces, Bull. korean math. Soc. 46, No. 6, 1135-1140 (2009) · Zbl 1177.47044 · doi:10.4134/BKMS.2009.46.6.1135
[13]Ohno, S.; Stroethoff, K.; Zhao, R.: Weighted composition operators between Bloch-type spaces, Rocky mountain J. Math. 33, No. 1, 191-215 (2003) · Zbl 1042.47018 · doi:10.1216/rmjm/1181069993 · doi:http://math.la.asu.edu/~rmmc/rmj/Vol33-1/CONT33-1/CONT33-1.html
[14]H.J. Schwartz, Composition operators on Hp, Thesis, University of Toledo, 1969.
[15]Stević, S.: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to Hμ, Appl. math. Comput. 207, 225-229 (2009) · Zbl 1157.47026 · doi:10.1016/j.amc.2008.10.032
[16]Stević, S.: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. math. Anal. appl. 354, 426-434 (2009) · Zbl 1171.47028 · doi:10.1016/j.jmaa.2008.12.059
[17]Stević, S.: Products of composition and differentiation operators on the weighted Bergman space, Bull. belg. Math. soc. Simon stevin 16, 623-635 (2009) · Zbl 1181.30031 · doi:euclid:bbms/1257776238
[18]Stević, S.: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. math. Comput. 211, 222-233 (2009) · Zbl 1165.30029 · doi:10.1016/j.amc.2009.01.061
[19]Stević, S.: Composition followed by differentiation from H and the Bloch space to nth weighted-type spaces on the unit disk, Appl. math. Comput. 216, 3450-3458 (2010) · Zbl 1195.30070 · doi:10.1016/j.amc.2010.03.117
[20]Stević, S.: Integral-type operators between α-Bloch spaces and Besov spaces on the unit ball, Appl. math. Comput. 216, 3541-3549 (2010) · Zbl 1219.47049 · doi:10.1016/j.amc.2010.04.074
[21]Stević, S.: On an integral operator between Bloch-type spaces on the unit ball, Bull. sci. Math. 134, 329-339 (2010) · Zbl 1189.47032 · doi:10.1016/j.bulsci.2008.10.005
[22]Stević, S.: On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball, Appl. math. Comput. 215, 3817-3823 (2010) · Zbl 1184.30052 · doi:10.1016/j.amc.2009.11.022
[23]Stević, S.: On operator Pϕg from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. math. Comput. 215, 4248-4255 (2010)
[24]Stević, S.: Weighted differentiation composition operators from H and Bloch spaces to nth weigthed-type spaces on the unit disk, Appl. math. Comput. 216, 3634-3641 (2010) · Zbl 1195.30073 · doi:10.1016/j.amc.2010.05.014
[25]Stević, S.; Sharma, A. K.: Composition operators from the space of Cauchy transforms to Bloch and the little Bloch-type spaces on the unit disk, Appl. math. Comput. 217, 10187-10194 (2011) · Zbl 1220.30072 · doi:10.1016/j.amc.2011.05.014
[26]Stević, S.; Sharma, A. K.; Bhat, A.: Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. math. Comput. 217, 8115-8125 (2011) · Zbl 1218.30152 · doi:10.1016/j.amc.2011.03.014
[27]Stević, S.; Zhou, Z. H.; Chen, R.: Weighted composition operators between Bloch type spaces in the polydisc, Sb. math. 201, No. 1 – 2, 289-319 (2010)
[28]Yang, W.: On an integral-type operator between Bloch-type spaces, Appl. math. Comput. 215, No. 3, 954-960 (2009) · Zbl 1185.45020 · doi:10.1016/j.amc.2009.06.016
[29]Yang, W.; Meng, X.: Generalized composition operators from F(p,q,s) spaces to Bloch-type spaces, Appl. math. Comput. 217, No. 6, 2513-2519 (2010) · Zbl 1221.47048 · doi:10.1016/j.amc.2010.07.063
[30]Zhu, K.: Bloch type spaces of analytic functions, Rocky mountain J. Math. 23, No. 3, 1143-1177 (1993) · Zbl 0787.30019 · doi:10.1216/rmjm/1181072549
[31]Zhu, X.: Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49, No. 2, 139-149 (2007) · Zbl 1130.47017
[32]Zhu, X.; Differentiation, Products Of: Composition and multiplication from Bergman type spaces to bers spaces, Integral transform. Spec. funct. 18, No. 3, 223-231 (2007) · Zbl 1119.47035 · doi:10.1080/10652460701210250
[33]Zhu, X.: Multiplication followed by differentiation on Bloch-type spaces, Bull. allahbad. Math. soc. 23, No. 1, 25-39 (2008) · Zbl 1170.47020