zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. (English) Zbl 1244.34008
Summary: By establishing a comparison result and using the monotone iterative technique combined with the method of upper and lower solutions, we investigate the existence of solutions for systems of nonlinear fractional differential equations.
MSC:
34A08Fractional differential equations
34A45Theoretical approximation of solutions of ODE
References:
[1]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006)
[2]Podlubny, I.: Fractional differential equations, mathematics in science and engineering, (1999)
[3]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives. Theory and applications, (1993) · Zbl 0818.26003
[4]Lakshmikantham, V.; Leela, S.; Vasundhara, J.: Theory of fractional dynamic systems, (2009)
[5]Babakhani, A.; Daftardar-Gejji, Varsha: Existence of positive solutions of nonlinear fractional differential equations, J. math. Anal. appl. 278, 434-442 (2003) · Zbl 1027.34003 · doi:10.1016/S0022-247X(02)00716-3
[6]Lakshmikantham, V.; Vatsala, A. S.: Basic theory of fractional differential equations, Nonlinear anal. 69, No. 8, 2677-2682 (2008) · Zbl 1161.34001 · doi:10.1016/j.na.2007.08.042
[7]Lakshmikanthan, V.; Vatsala, A. S.: General uniqueness and monotone iterative technique for fractional differential equations, Appl. math. Lett. 21, 828-834 (2008) · Zbl 1161.34031 · doi:10.1016/j.aml.2007.09.006
[8]Bai, Z. B.: On positive solutions of a nonlocal fractional boundary value problem, Nonlinear anal. 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[9]Bai, Z. B.; Lü, H. S.: Positive solutions of boundary value problems of nonlinear fractional differential equation, J. math. Anal. appl. 311, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[10]Shuqin, Zhang: Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives, Nonlinear anal. 71, 2087-2093 (2009) · Zbl 1172.26307 · doi:10.1016/j.na.2009.01.043
[11]Shuqin, Zhang: The existence of a positive solution for a nonlinear fractional differential equation, J. math. Anal. appl. 252, 804-812 (2000) · Zbl 0972.34004 · doi:10.1006/jmaa.2000.7123
[12]Belmekki, M.; Benchohra, M.: Existence results for fractional order semilinear functional differential equations with nondense domain, Nonlinear anal. 72, 925-932 (2010) · Zbl 1179.26018 · doi:10.1016/j.na.2009.07.034
[13]Belmekki, M.; Nieto, J. J.; Rodriguez-Lopez, R.: Existence of periodic solution for a nonlinear fractional differential equation, Bound. value probl. 2009, 18 (2009) · Zbl 1181.34006 · doi:10.1155/2009/324561
[14]Wei, Z.; Li, Q.; Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative, J. math. Anal. appl. (2010)
[15]El-Shahed, Moustafa: Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. appl. Anal. 2007, 8 (2007) · Zbl 1149.26012 · doi:10.1155/2007/10368\thinspace
[16]Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations, Nonlinear anal. (2009)
[17]Bai, C.; Fang, J.: The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. math. Comput. 150, 611-621 (2004) · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7
[18]Chen, Y.; An, H.: Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. math. Comput. 200, 87-95 (2008) · Zbl 1143.65102 · doi:10.1016/j.amc.2007.10.050
[19]Gafiychuk, V.; Datsko, B.; Meleshko, V.: Mathematical modeling of time fractional reaction–diffusion systems, J. comput. Appl. math. 220, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[20]Bhalekar, Sachin; Daftardar-Gejji, Varsha: Fractional ordered Liu system with time-delay, Commun. nonlinear sci. Numer. simul. 15, 2178-2191 (2010) · Zbl 1222.34005 · doi:10.1016/j.cnsns.2009.08.015
[21]Jafari, Hossein; Daftardar-Gejji, Varsha: Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. comput. Appl. math. 196, 644-651 (2006) · Zbl 1099.65137 · doi:10.1016/j.cam.2005.10.017
[22]Daftardar-Gejji, Varsha: Positive solutions of a system of non-autonomous fractional differential equations, J. math. Anal. appl. 302, 56-64 (2005) · Zbl 1064.34004 · doi:10.1016/j.jmaa.2004.08.007
[23]Lazarevi, M. P.: Finite time stability analysis of PDα fractional control of robotic time-delay systems, Mech. res. Comm. 33, 269-279 (2006) · Zbl 1192.70008 · doi:10.1016/j.mechrescom.2005.08.010
[24]Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. math. Lett. 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[25]Ahmad, B.; Nieto, J. J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. math. Appl. 58, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[26]Wang, Guotao; Song, Guangxing; Zhang, Lihong: Integral boundary value problems for first order integro–differential equations with deviating arguments, J. comput. Appl. math. 225, 602-611 (2009) · Zbl 1169.45002 · doi:10.1016/j.cam.2008.08.030
[27]Ahmad, Bashir; Sivasundaram, S.: Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation, Appl. math. Comput. 197, 515-524 (2008) · Zbl 1142.34049 · doi:10.1016/j.amc.2007.07.065