zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A general decay result in a quasilinear parabolic system with viscoelastic term. (English) Zbl 1244.45004

Summary: We consider a quasilinear parabolic system of the form

A(t)|u t | m-2 u t -Δu+ 0 t g(t-s)Δu(x,s)ds=0,

for m2,A(t) a bounded and positive definite matrix, and g a continuously differentiable decaying function and establish a general decay result from which the usual exponential and polynomial decay results are only special cases.

MSC:
45K05Integro-partial differential equations
References:
[1]Nohel, J. A.: Nonlinear Volterra equations for the heat flow in materials with memory, Lecture notes in pure and applied mathematics (1981) · Zbl 0465.45017
[2]Da Prato, G.; Iannelli, M.: Existence and regularity for a class of integro-differential equations of parabolic type, J. math. Anal. appl. 112, 36-55 (1985) · Zbl 0583.45009 · doi:10.1016/0022-247X(85)90275-6
[3]Yin, H. M.: On parabolic Volterra equations in several space dimensions, SIAM J. Math. anal. 22, 1723-1737 (1991) · Zbl 0745.45003 · doi:10.1137/0522106
[4]Levine, H.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=-au+F(u), Arch ration. Mech. anal. 51, 371-386 (1973) · Zbl 0278.35052 · doi:10.1007/BF00263041
[5]Kalantarov, V. K.; Ladyzhenskaya, O. A.: The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. soviet math. 10, 53-70 (1978) · Zbl 0388.35039 · doi:10.1007/BF01109723
[6]Levine, H.; Park, S.; Serrin, J.: Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type, J. differential equations 142, 212-229 (1998) · Zbl 0891.35062 · doi:10.1006/jdeq.1997.3362
[7]Messaoudi, S. A.: A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy, J. math. Anal. appl. 273, 243-247 (2002) · Zbl 1121.35323 · doi:10.1016/S0022-247X(02)00220-2
[8]Nakao, M.; Ohara, Y.: Gradient estimates for a quasilinear parabolic equation of the mean curvature type, J. math. Soc. Japan 48 # 3, 455-466 (1996)
[9]Nakao, M.; Chen, C.: Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term, J. differential equations 162, 224-250 (2000) · Zbl 0959.35103 · doi:10.1006/jdeq.1999.3694
[10]Englern, H.; Kawohl, B.; Luckhaus, S.: Gradient estimates for solutions of parabolic equations and systems, J. math. Anal. appl. 147, 309-329 (1990) · Zbl 0708.35018 · doi:10.1016/0022-247X(90)90350-O
[11]Pucci, P.; Serrin, J.: Asymptotic stability for nonlinear parabolic systems, (1996)
[12]Berrimi, S.; Messaoudi, S. A.: A decay result for a quasilinear parabolic system, Progr. nonlinear differential equations appl. 53, 43-50 (2005) · Zbl 1082.35029
[13]Martinez, P.: A new method to decay rate estimates for dissipative systems, ESAIM control. Optim. calc. Var. 4, 419-444 (1999) · Zbl 0923.35027 · doi:10.1051/cocv:1999116 · doi:http://www.edpsciences.org/articles/cocv/abs/1999/01/cocvVol4-16/cocvVol4-16.html