zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. (English) Zbl 1244.65137
Summary: In this paper, we use a numerical method based on the boundary integral equation (BIE) and an application of the dual reciprocity method (DRM) to solve the second-order one space-dimensional hyperbolic telegraph equation. Also the time stepping scheme is employed to deal with the time derivative. In this study, we have used three different types of radial basis functions (cubic, thin plate spline and linear RBFs), to approximate functions in the dual reciprocity method (DRM). To confirm the accuracy of the new approach and to show the performance of each of the RBFs, several examples are presented. The convergence of the DRBIE method is studied numerically by comparison with the exact solutions of the problems.
MSC:
65M38Boundary element methods (IVP of PDE)
References:
[1]Pozar, Dm.: Microwave engineering, (1990)
[2]Mohebbi, A.; Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation, Numer methods partial diff eq 24, No. 5, 1222-1235 (2008) · Zbl 1151.65071 · doi:10.1002/num.20313
[3]Jeffrey A. Advanced engineering mathematics. Harcourt Academic Press; 2002 [copyright 2002].
[4]Jeffrey, A.: Applied partial differential equations, (2002)
[5]Mohanty, R. K.: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations, Int J comput math, 1-11 (2008)
[6]Pascal, H.: Pressure wave propagation in a fluid flowing through a porous medium and problems related to interpretation of Stoneley’s wave attenuation in acoustical well logging, Int J eng sci 24, 1553-1570 (1986) · Zbl 0624.76119 · doi:10.1016/0020-7225(86)90163-1
[7]Bohme, G.: Non-Newtonian fluid mechanics, (1987)
[8]Evans, D. J.; Bulut, H.: The numerical solution of the telegraph equation by the alternating group explicit method, Int J comput math 80, 1289-1297 (2003) · Zbl 1043.65101 · doi:10.1080/0020716031000112312
[9]Jordan, P. M.; Meyer, M. R.; Puri, A.: Causal implications of viscous damping in compressible fluid flows, Phys rev E 62, 7918-7926 (2000)
[10]Bereanu, C.: Periodic solutions of the nonlinear telegraph equations with bounded nonlinearities, J math anal appl 343, 758-762 (2008) · Zbl 1144.35005 · doi:10.1016/j.jmaa.2008.02.006
[11]Mawhin, J.; Ortega, R.; Robles-Perez, A. M.: A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J math anal appl 251, 695-709 (2000) · Zbl 0972.35016 · doi:10.1006/jmaa.2000.7038
[12]Ortega, R.; Robles-Perez, A. M.: A maximum principle for periodic solutions of the telegraph equations, J math anal appl 221, 625-651 (1998) · Zbl 0932.35016 · doi:10.1006/jmaa.1998.5921
[13]Alonso, J. M.; Mawhin, J.; Ortega, R.: Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation, J math pure appl 78, 49-63 (1999) · Zbl 0927.34048 · doi:10.1016/S0021-7824(99)80009-9
[14]Wang, F.; An, Y.: Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system, J math anal appl 349, 30-42 (2009) · Zbl 1159.35011 · doi:10.1016/j.jmaa.2008.08.003
[15]Wang, F.; An, Y.: Nonnegative doubly periodic solutions for nonlinear telegraph system, J math anal appl 338, 91-100 (2008) · Zbl 1145.35010 · doi:10.1016/j.jmaa.2007.05.008
[16]Kim, W. S.: Doubly-periodic boundary value problem for nonlinear dissipative hyperbolic equations, J math anal appl 145, 1-6 (1990) · Zbl 0717.35057 · doi:10.1016/0022-247X(90)90426-G
[17]Kim, W. S.: Multiple doubly periodic solutions of semilinear dissipative hyperbolic equations, J math anal appl 197, 735-748 (1996) · Zbl 0870.35069 · doi:10.1006/jmaa.1996.0049
[18]Li, Y.: Positive doubly periodic solutions of nonlinear telegraph equations, Nonlinear anal 55, 245-254 (2003) · Zbl 1036.35020 · doi:10.1016/S0362-546X(03)00227-X
[19]Abdusalam, H. A.: Asymptotic solution of wave front of the telegraph model of dispersive variability, Chaos solitons and fractals 30, 1190-1197 (2006) · Zbl 1142.35454 · doi:10.1016/j.chaos.2005.08.184
[20]Liu, H. W.; Liu, L. B.: An unconditionally stable spline difference scheme of O(k2+h4) for solving the second order 1D linear hyperbolic equation, Math comput model 49, 1985-1993 (2009) · Zbl 1171.65424 · doi:10.1016/j.mcm.2008.12.001
[21]Ciment, M.; Leventhal, S. H.: A note on the operator compact implicit method for the wave equation, Math comput 32, No. 1, 143-147 (1978) · Zbl 0373.35039 · doi:10.2307/2006263
[22]Mohanty, R. K.; Jain, M. K.; George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients, Comput appl math 72, No. 2, 421-431 (1996) · Zbl 0877.65066 · doi:10.1016/0377-0427(96)00011-8
[23]Twizell, E. H.: An explicit difference method for the wave equation with extended stability range, BIT numer math 19, No. 3, 378-383 (1979) · Zbl 0441.65066 · doi:10.1007/BF01930991
[24]Mohanty, R. K.; Jain, M. K.: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation, Numer methods partial diff eq 17, No. 6, 684-688 (2001) · Zbl 0990.65101 · doi:10.1002/num.1034
[25]Mohanty, R. K.; Jain, M. K.; Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensional, Int J comput math 79, No. 1, 133-142 (2002) · Zbl 0995.65093 · doi:10.1080/00207160211918
[26]Mohanty, R. K.: An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation, Appl math lett 17, No. 1, 101-105 (2004) · Zbl 1046.65076 · doi:10.1016/S0893-9659(04)90019-5
[27]El-Azab, M. S.; El-Ghamel, M.: A numerical algorithm for the solution of telegraph equations, Appl math comput 190, 757-764 (2007) · Zbl 1132.65087 · doi:10.1016/j.amc.2007.01.091
[28]Dehghan, M.; Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation, Numer methods partial diff eq 25, 931-938 (2009) · Zbl 1169.65102 · doi:10.1002/num.20382
[29]Dehghan, M.; Shokri, A.: A numerical method for solving the hyperbolic telegraph equation, Numer methods partial diff eq 24, 1080-1093 (2008) · Zbl 1145.65078 · doi:10.1002/num.20306
[30]Dehghan, M.; Shokri, A.: A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in two space dimensions, Numer methods partial diff eq 25, 494-506 (2009) · Zbl 1159.65084 · doi:10.1002/num.20357
[31]Dehghan, M.; Mohebbi, A.: High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer methods partial diff eq 25, 232-243 (2009) · Zbl 1156.65087 · doi:10.1002/num.20341
[32]Saadatmandi A, Dehghan M. Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numer Methods Partial Diff Eq, in press. · Zbl 1186.65136 · doi:10.1002/num.20442
[33]Ang, W. T.: A beginner’s course in boundary element methods, (2007)
[34]Brebbia, C. A.; Telles, C. F.; Wrobel, L. C.: Boundary element techniques, (1994)
[35]Ramachandran, P. A.: Boundary element methods in transport phenomena, (1994)
[36]Aliabadi, M. H.; Brebbia, C. A.: Advanced formulations in boundary element methods, (1993)
[37]Nardini, D.; Brebbia, C. A.: A new approach for free vibration analysis using boundary elements, Bound element methods in engineering (1982) · Zbl 0541.73104
[38]Partridge, P. W.; Brebbia, C. A.; Wrobel, L. C.: The dual reciprocity boundary element method, (1992) · Zbl 0758.65071
[39]Brebbia, C. A.; Wrobel, L. C.: The dual reciprocity boundary element formulation for non-linear diffusion problems, Comput methods appl mech eng 65, 147-164 (1987) · Zbl 0612.76094 · doi:10.1016/0045-7825(87)90010-7
[40]Zhu, S. -P.: A new DRBEM model for wave refraction and diffraction, Eng anal bound elem 12, 261-274 (1993)
[41]Zhu, S. -P.; Liu, H-W.; Chen, K.: A general DRBEM model for wave refraction and diffraction, Eng anal bound elem 24, 377-390 (2000) · Zbl 0980.76056 · doi:10.1016/S0955-7997(00)00015-1
[42]Chen, J. T.; Wong, F. C.: Analytical derivations for one-dimensional eigenproblems using dual boundary element method and multiple reciprocity method, Eng anal bound elem 20, 25-33 (1997)
[43]Chino, E.; Tosaka, N.: Dual reciprocity boundary element analysis of time-independent Burgers equation, Eng anal bound elem 21, 261-270 (1998) · Zbl 0954.76058 · doi:10.1016/S0955-7997(98)00003-4
[44]Dehghan, M.; Mirzaei, D.: The boundary integral approach for numerical solution of the one-dimensional sine – Gordon equation, Numer methods partial diff eq 24, 1405-1415 (2008) · Zbl 1153.65099 · doi:10.1002/num.20325
[45]Dehghan, M.; Mirzaei, D.: A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn – Hilliard equation, Eng anal bound elem 33, No. 4, 522-528 (2009)
[46]Ang, W. T.: A numerical method for the wave equation subject to a non-local conservation condition, Appl numer math 56, 1054-1060 (2006) · Zbl 1096.65100 · doi:10.1016/j.apnum.2005.09.006
[47]Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation, Numer methods partial diff eq 21, 24-40 (2005) · Zbl 1059.65072 · doi:10.1002/num.20019
[48]Ang, W. T.; Ang, K. C.: A dual-reciprocity boundary element solution of a generalized nonlinear Schrödinger equation, Numer methods partial diff eq 20, 843-854 (2004) · Zbl 1062.65109 · doi:10.1002/num.20011
[49]Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math comput simul 71, 16-30 (2006) · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[50]Zhu, S-P.; Liu, H-W.; Marchant, T.: A perturbation DRBEM model for weakly nonlinear wave run-ups around islands, Eng anal bound elem 33, 63-76 (2009) · Zbl 1188.76233 · doi:10.1016/j.enganabound.2008.03.009
[51]Yamada, T.; Wrobel, L. C.; Power, H.: On the convergence of the dual reciprocity boundary element method, Eng anal bound elem 13, 291-298 (1994)
[52]Zhang, Y.; Zhu, S. P.: On the choice of interpolation functions used in the dual reciprocity boundary element method, Eng anal bound elem 13, 387-396 (1994)
[53]Karur, S. R.; Ramachandran, P. A.: Radial basis function approximation in the dual reciprocity method, Math comput model 20, 59-70 (1994) · Zbl 0812.65101 · doi:10.1016/0895-7177(94)90070-1
[54]Partridge, P. W.: Towards criteria for selecting approximation functions in the dual reciprocity method, Eng anal bound elem 24, 519-529 (2000) · Zbl 0968.65097 · doi:10.1016/S0955-7997(00)00032-1
[55]Partridge, P. W.; Sensale, B.: Hybrid approximation functions in the dual reciprocity boundary element method, Commun numer methods eng 13, 83-94 (1997) · Zbl 0874.73071 · doi:10.1002/(SICI)1099-0887(199702)13:2<83::AID-CNM34>3.0.CO;2-N
[56]Gao, F.; Chi, C.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation, Appl math comput 187, 1272-1276 (2007) · Zbl 1114.65347 · doi:10.1016/j.amc.2006.09.057