zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inverse source identification by Green’s function. (English) Zbl 1244.65162
Summary: Based on the use of Green’s function, we propose in this paper a new approach for solving specific classes of inverse source identification problems. Effective numerical algorithms are developed to recover both the intensities and locations of unknown point sources from scattered boundary measurements. For numerical verification, several boundary value problems defined on both bounded and unbounded regions of regular shape are given. Due to the use of closed analytic form of Green’s function, the efficiency and accuracy of the proposed method can be guaranteed.
MSC:
65N21Inverse problems (BVP of PDE, numerical methods)
65N80Fundamental solutions, Green’s function methods, etc. (BVP of PDE)
References:
[1]Adams, R. A.: Sobolev spaces, Pure and applied mathematics 65 (1975) · Zbl 0314.46030
[2]Alves, C. J. S.; Abdallah, J. B.; Jaoua, M.: Recovery of cracks using a point-source reciprocity gap function, Inverse problems in science and engineering 12, No. 5, 519-534 (2004)
[3]Alves CJS, Antunes PRS. The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. In: ECCOMAS thematic conference on meshless methods, vol. 2; 2005. p. 251–65.
[4]Alves, C. J. S.; Colaço, M. J.; Leitão, V. M. A.; Martins, N. F. M.; Orlande, H. R. B.; Roberty, N. C.: Recovering the source term in a linear diffusion problem by the method of fundamental solutions, Inverse problems in science and engineering 16, 1005-1021 (2005) · Zbl 1159.65354 · doi:10.1080/17415970802083243
[5]Alves, C. J. S.; Martins, N. F. M.: Reconstruction of inclusions or cavities in potential problems using the MFS, The method of fundamental solutions–a meshless method, 51-73 (2008)
[6]Andrieux, S.; Abda, A. B.: Identification of planar cracks by complete overdetermined data: inversion formulae, Inverse problems 12, No. 5, 553-563 (1996) · Zbl 0858.35131 · doi:10.1088/0266-5611/12/5/002
[7]Anikonov YE, Bubnov BA, Erokhin GN. Inverse and ill-posed sources problems, inverse and ill-posed problems, VSP, Utrecht, 1997.
[8]Badia, A. E.; Duong, T. H.: Some remarks on the problem of source identification from boundary measurements, Inverse problems 14, No. 4, 883-891 (1998) · Zbl 0916.35135 · doi:10.1088/0266-5611/14/4/008
[9]Bakushinskii, A. B.: Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion, USSR computational mathematics and mathematical physics 24, 181-182 (1985)
[10]Barry, J. M.: Heat source determination in waste rock dumps, (1998)
[11]Chen, L. Y.; Chen, J. T.; Hong, H. K.; Chen, C. H.: Application of Cesàro mean and the L-curve for the deconvolution problem, Soil dynamics and earthquake engineering 14, 361-373 (1995)
[12]Clements, D. L.: Fundamental solutions for second order linear elliptic partial differential equations, Computational mechanics 22, 26-31 (1998) · Zbl 0914.35003 · doi:10.1007/s004660050335
[13]Engl, H. W.; Hanke, M.; Neubauer, A.: Regularization of inverse problems. In:Mathematics and its applications, vol. 375, (1996) · Zbl 0859.65054
[14]Fairweather, G.; Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems, Advances in computational mathematics 9, 69-95 (1998) · Zbl 0922.65074 · doi:10.1023/A:1018981221740
[15]Frankel, J. I.: Residual-minimization least-squares method for inverse heat conduction, Computers & mathematics with applications 32, No. 4, 117-130 (1996) · Zbl 0858.65098 · doi:10.1016/0898-1221(96)00130-7
[16]Frankel, J. I.: Constraining inverse Stefan design problems, Zeitschrift für angewandte Mathematik und physik 47, No. 3, 456-466 (1996) · Zbl 0864.76089 · doi:10.1007/BF00916649
[17]Gellrich, C.; Hofmann, B.: A study of regularization by monotonicity, Journal of computing 50, 105-125 (1993) · Zbl 0774.65099 · doi:10.1007/BF02238609
[18]Golberg, M. A.; Chen, C. S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary integral methods: numerical and mathematical aspects, 105-176 (1999) · Zbl 0945.65130
[19]Gorzelańczyk, P.; Kołodziej, A.: Some remarks concerning the shape of the shape contour with application of the method of fundamental solutions to elastic torsion of prismatic rods, Engineering analysis with boundary elements 32, 64-75 (2008)
[20]Hanke, M.; Hansen, P. C.: Regularization method for large-scale problem, Surveys on mathematics for industry 3, 253-315 (1993) · Zbl 0805.65058
[21]Hansen, P. C.; O’leary, D. P.: The use of the L-curve in the regularization of discrete ill-posed problems, SIAM journal on scientific computing 14, 1487-1503 (1993) · Zbl 0789.65030 · doi:10.1137/0914086
[22]Hansen, P. C.: Analysis of discrete ill-posed problems by means of the L-curve, SIAM review 34, 561-580 (1992) · Zbl 0770.65026 · doi:10.1137/1034115
[23]Hansen, P. C.: Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Inverse problems 8, 849-872 (1992) · Zbl 0782.65153 · doi:10.1088/0266-5611/8/6/005
[24]Hansen, P. C.: The L-curve and its use in the numerical treatment of inverse problems, computational inverse problems in electrocardiology, Advances in computational bioengineering series 4 (2000)
[25]Hansen, P. C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numerical algorithms 6, 1-35 (1994) · Zbl 0789.65029 · doi:10.1007/BF02149761
[26]Hon, Y. C.; Li, M.: A computational method for inverse free boundary determination problem, International journal for numerical methods in engineering 73, 1291-1309 (2008) · Zbl 1158.80328 · doi:10.1002/nme.2122
[27]Hon, Y. C.; Li, M.: A discrepancy principle for the source points location in using the MFS for solving BHCP, International journal of computational methods 6, No. 2, 181-198 (2009)
[28]Hon, Y. C.; Wei, T.: A fundamental solution method for inverse heat conduction problem, Engineering analysis with boundary elements 28, 489-495 (2004)
[29]Hon, Y. C.; Wei, T.: Numerical computation for multidimensional inverse heat conduction problem, Computer modeling in engineering & sciences 7, No. 2, 119-132 (2005)
[30]Isakov, V.: Inverse source problems. In: mathematical surveys and monographs, vol. 34, (1990) · Zbl 0721.31002
[31]Jin, B.; Marin, L.: The method of fundamental solutions for inverse source problems associated with the steady state heat conduction, International journal for numerical methods in engineering 69, 1572-1589 (2007) · Zbl 1194.80101 · doi:10.1002/nme.1826
[32]Jin, B.; Zheng, Y.: A meshless method for some inverse problems associated with the Helmholtz equation, Computer methods in applied mechanics and engineering 195, 2270-2288 (2006) · Zbl 1123.65111 · doi:10.1016/j.cma.2005.05.013
[33]Jin, B.; Zheng, Y.; Marin, L.: The method of fundamental solutions for inverse boundary value problems associated with the steady state heat conduction in anisotropic media, International journal for numerical methods in engineering 65, 1865-1891 (2006) · Zbl 1124.80400 · doi:10.1002/nme.1526
[34]Kress, R.; Mohsen, A.: On the simulation source technique for exterior problems in acoustics, Mathematical method in the applied sciences 8, 585-597 (1986) · Zbl 0626.35019 · doi:10.1002/mma.1670080138
[35]Kriegsmann, G. A.; Olmstead, W. E.: Source identification for the heat equation, Applied mathematics letters 1, No. 3, 241-245 (1988) · Zbl 0696.35187 · doi:10.1016/0893-9659(88)90084-5
[36]Kupradze, V. D.; Aleksidze, M. A.: The method of functional equations for the approximate solution of certain boundary value problems, USSR computational mathematics and mathematical physics 4, 82-126 (1964) · Zbl 0154.17604 · doi:10.1016/0041-5553(64)90006-0
[37]Lawson, C. L.; Hanson, R. J.: Solving least squares problems, (1995)
[38]Magnoli, N.; Viano, G. A.: The source identification problem in electromagnetic theory, Journal of mathematical physics 38, No. 5, 2366-2388 (1997) · Zbl 0876.35130 · doi:10.1063/1.531978
[39]Marin, L.: A meshless method for solving the Cauchy problem in three-dimensional elastostatics, Computers & mathematics with applications 50, 73-92 (2005) · Zbl 1127.74014 · doi:10.1016/j.camwa.2005.02.009
[40]Marin, L.: A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations, Applied mathematics and computation 165, 355-374 (2005) · Zbl 1070.65115 · doi:10.1016/j.amc.2004.04.052
[41]Marin, L.: Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials, International journal of solids and structures 42, 4338-4351 (2005) · Zbl 1120.80308 · doi:10.1016/j.ijsolstr.2005.01.005
[42]Marin, L.: The method of fundamental solutions for inverse problems associated with the steady-state heat conduction in the presence of sources, CMES: computer modeling in engineering and science 30, 99-122 (2008)
[43]Marin, L.: Stable MFS solution to singular direct and inverse problems associated with the Laplace equation subjected to noisy data, CMES: computer modeling in engineering and science 37, 203-242 (2008)
[44]Marin, L.; Lesnic, D.: The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity, International journal of solids and structures 41, 3425-3438 (2004) · Zbl 1071.74055 · doi:10.1016/j.ijsolstr.2004.02.009
[45]Marin, L.; Lesnic, D.: The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations, Computers & structures 83, 267-278 (2005)
[46]Marin, L.; Lesnic, D.: The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation, Mathematical and computer modelling 42, 261-278 (2005) · Zbl 1088.35079 · doi:10.1016/j.mcm.2005.04.004
[47]Mathon, R.; Johnston, R. L.: The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM journal on numerical analysis 14, 638-650 (1977) · Zbl 0368.65058 · doi:10.1137/0714043
[48]Melnikov, Y. A.: Influence functions and matrices, (1999)
[49]Mera, N. S.: The method of fundamental solutions for the backward heat conduction problem, Inverse problems in science and engineering 13, No. 1, 65-78 (2005)
[50]Mitic, P.; Rashed, Y. F.: Convergence and stability of the method of meshless fundamental solutions using an array of randomly distributed sources, Engineering analysis with boundary elements 28, 143-153 (2004) · Zbl 1057.65091 · doi:10.1016/j.enganabound.2003.07.005
[51]Saavedra, I.; Power, H.: Adaptive refinement scheme for the least-squares approach of the method of fundamental solution for three-dimensional harmonic problems, Engineering analysis with boundary elements 28, 1123-1133 (2004) · Zbl 1074.65132 · doi:10.1016/j.enganabound.2003.12.005
[52]Shigeta, T.; Young, D. L.: Method of fundamental solutions with optimal regularization techniques for the Cauchy problem of the Laplace equation with singular points, Journal of computational physics 228, 1903-1915 (2009) · Zbl 1161.65353 · doi:10.1016/j.jcp.2008.11.018
[53]Tautenhahn, U.; Hämarik, U.: The use of monotonicity for choosing the regularization parameter in ill-posed problems, Inverse problems 15, 1487-1505 (1999) · Zbl 0948.65057 · doi:10.1088/0266-5611/15/6/307
[54]Tikhonov, A. N.; Arsenin, V. Y.: On the solution of ill-posed problems, (1977)
[55]Wei, T.; Li, Y. S.: An inverse boundary problem for one-dimensional heat equation with a multilayer domain, Engineering analysis with boundary elements 33, 225-232 (2009)
[56]Yan, L.; Fu, C. L.; Yang, F. L.: The method of fundamental solutions for the inverse heat source problem, Engineering analysis with boundary elements 32, 216-222 (2008)
[57]Yan, L.; Yang, F. L.; Fu, C. L.: A meshless method for solving an inverse spacewise-dependent heat source problem, Journal of computational physics 228, 123-136 (2009) · Zbl 1157.65444 · doi:10.1016/j.jcp.2008.09.001
[58]Young, D. L.; Tsai, C. C.; Chen, C. W.; Fan, C. M.: The method of fundamental solutions and condition number analysis for inverse problems of Laplace equation, Computers & mathematics with applications 55, 1189-1200 (2008) · Zbl 1143.65087 · doi:10.1016/j.camwa.2007.05.015
[59]Zhou, D.; Wei, T.: The method of fundamental solutions for solving a Cauchy problem of Laplace’s equation in a multiconnected domain, Inverse problems in science and engineering 16, 389-411 (2008)